ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2207.10308
  4. Cited By
UniFed: All-In-One Federated Learning Platform to Unify Open-Source
  Frameworks
v1v2v3 (latest)

UniFed: All-In-One Federated Learning Platform to Unify Open-Source Frameworks

21 July 2022
Xiaoyuan Liu
Tianneng Shi
Chulin Xie
Qinbin Li
Kangping Hu
Haoyu Kim
Xiaojun Xu
The-Anh Vu-Le
Zhen Huang
Arash Nourian
Yue Liu
Basel Alomair
    FedML
ArXiv (abs)PDFHTML

Papers citing "UniFed: All-In-One Federated Learning Platform to Unify Open-Source Frameworks"

3 / 3 papers shown
Title
MetisFL: An Embarrassingly Parallelized Controller for Scalable &
  Efficient Federated Learning Workflows
MetisFL: An Embarrassingly Parallelized Controller for Scalable & Efficient Federated Learning Workflows
Dimitris Stripelis
Chrysovalantis Anastasiou
Patrick Toral
Armaghan Asghar
J. Ambite
232
2
0
01 Nov 2023
XFL: A High Performace, Lightweighted Federated Learning Framework
XFL: A High Performace, Lightweighted Federated Learning Framework
Hong Wang
Yuanzhi Zhou
Chi Zhang
Chen Peng
Mingxia Huang
Yi Liu
Lintao Zhang
FedML
108
4
0
10 Feb 2023
FLUTE: A Scalable, Extensible Framework for High-Performance Federated
  Learning Simulations
FLUTE: A Scalable, Extensible Framework for High-Performance Federated Learning Simulations
Mirian Hipolito Garcia
Andre Manoel
Daniel Madrigal Diaz
Fatemehsadat Mireshghallah
Robert Sim
Dimitrios Dimitriadis
FedML
178
63
0
25 Mar 2022
1