ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2207.13963
  4. Cited By
Meta-Learning based Degradation Representation for Blind
  Super-Resolution

Meta-Learning based Degradation Representation for Blind Super-Resolution

28 July 2022
Bin Xia
Yapeng Tian
Yulun Zhang
Yucheng Hang
Wenming Yang
Q. Liao
    SupR
ArXivPDFHTML

Papers citing "Meta-Learning based Degradation Representation for Blind Super-Resolution"

7 / 7 papers shown
Title
Content-decoupled Contrastive Learning-based Implicit Degradation Modeling for Blind Image Super-Resolution
Content-decoupled Contrastive Learning-based Implicit Degradation Modeling for Blind Image Super-Resolution
Jiang Yuan
Ji Ma
Bo Wang
Weiming Hu
30
0
0
10 Aug 2024
Efficient Real-world Image Super-Resolution Via Adaptive Directional
  Gradient Convolution
Efficient Real-world Image Super-Resolution Via Adaptive Directional Gradient Convolution
Long Peng
Yang Cao
Renjing Pei
Wenbo Li
Jiaming Guo
Xueyang Fu
Yang Wang
Zheng-Jun Zha
29
12
0
11 May 2024
NTIRE 2020 Challenge on Real-World Image Super-Resolution: Methods and
  Results
NTIRE 2020 Challenge on Real-World Image Super-Resolution: Methods and Results
Andreas Lugmayr
Martin Danelljan
Radu Timofte
Namhyuk Ahn
Dongwoon Bai
...
Tongtong Zhao
Yuanbo Zhou
Haijie Zhuo
Ziyao Zong
Xueyi Zou
SupR
69
168
0
05 May 2020
Deep Unfolding Network for Image Super-Resolution
Deep Unfolding Network for Image Super-Resolution
K. Zhang
Luc Van Gool
Radu Timofte
SupR
108
535
0
23 Mar 2020
Non-Local Recurrent Network for Image Restoration
Non-Local Recurrent Network for Image Restoration
Ding Liu
B. Wen
Yuchen Fan
Chen Change Loy
Thomas S. Huang
SupR
129
624
0
07 Jun 2018
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
  Applications
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
Andrew G. Howard
Menglong Zhu
Bo Chen
Dmitry Kalenichenko
Weijun Wang
Tobias Weyand
M. Andreetto
Hartwig Adam
3DH
948
20,214
0
17 Apr 2017
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
243
11,568
0
09 Mar 2017
1