Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2207.14315
Cited By
SPot-the-Difference Self-Supervised Pre-training for Anomaly Detection and Segmentation
28 July 2022
Yang Zou
Jongheon Jeong
Latha Pemula
Dongqing Zhang
O. Dabeer
Re-assign community
ArXiv
PDF
HTML
Papers citing
"SPot-the-Difference Self-Supervised Pre-training for Anomaly Detection and Segmentation"
7 / 57 papers shown
Title
FractalAD: A simple industrial anomaly detection method using fractal anomaly generation and backbone knowledge distillation
X. Xia
Weijie Lv
Xing He
Nan Li
Chuanqi Liu
Ning Ding
35
1
0
30 Jan 2023
FRE: A Fast Method For Anomaly Detection And Segmentation
I. Ndiour
Nilesh A. Ahuja
Ergin Utku Genc
Omesh Tickoo
48
2
0
23 Nov 2022
Reconstruction from edge image combined with color and gradient difference for industrial surface anomaly detection
Tongkun Liu
Bing Li
Zhu Zhao
Xiaoyu Du
Bin Jiang
Leqi Geng
28
35
0
26 Oct 2022
Anomaly Detection via Reverse Distillation from One-Class Embedding
Hanqiu Deng
Xingyu Li
UQCV
114
448
0
26 Jan 2022
Fully Convolutional Cross-Scale-Flows for Image-based Defect Detection
Marco Rudolph
Tom Wehrbein
Bodo Rosenhahn
Bastian Wandt
UQCV
78
208
0
06 Oct 2021
Instance Localization for Self-supervised Detection Pretraining
Ceyuan Yang
Zhirong Wu
Bolei Zhou
Stephen Lin
ViT
SSL
100
145
0
16 Feb 2021
On the surprising similarities between supervised and self-supervised models
Robert Geirhos
Kantharaju Narayanappa
Benjamin Mitzkus
Matthias Bethge
Felix Wichmann
Wieland Brendel
OOD
SSL
DRL
74
46
0
16 Oct 2020
Previous
1
2