ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2208.01134
  4. Cited By
Improving the Trainability of Deep Neural Networks through Layerwise
  Batch-Entropy Regularization

Improving the Trainability of Deep Neural Networks through Layerwise Batch-Entropy Regularization

1 August 2022
David Peer
Bart Keulen
Sebastian Stabinger
J. Piater
A. Rodríguez-Sánchez
ArXivPDFHTML

Papers citing "Improving the Trainability of Deep Neural Networks through Layerwise Batch-Entropy Regularization"

3 / 3 papers shown
Title
ReLU's Revival: On the Entropic Overload in Normalization-Free Large
  Language Models
ReLU's Revival: On the Entropic Overload in Normalization-Free Large Language Models
N. Jha
Brandon Reagen
OffRL
AI4CE
33
0
0
12 Oct 2024
Rapid training of deep neural networks without skip connections or
  normalization layers using Deep Kernel Shaping
Rapid training of deep neural networks without skip connections or normalization layers using Deep Kernel Shaping
James Martens
Andy Ballard
Guillaume Desjardins
G. Swirszcz
Valentin Dalibard
Jascha Narain Sohl-Dickstein
S. Schoenholz
88
43
0
05 Oct 2021
Dynamical Isometry and a Mean Field Theory of CNNs: How to Train
  10,000-Layer Vanilla Convolutional Neural Networks
Dynamical Isometry and a Mean Field Theory of CNNs: How to Train 10,000-Layer Vanilla Convolutional Neural Networks
Lechao Xiao
Yasaman Bahri
Jascha Narain Sohl-Dickstein
S. Schoenholz
Jeffrey Pennington
220
348
0
14 Jun 2018
1