Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2208.02507
Cited By
ZeroFL: Efficient On-Device Training for Federated Learning with Local Sparsity
4 August 2022
Xinchi Qiu
Javier Fernandez-Marques
Pedro Gusmão
Yan Gao
Titouan Parcollet
Nicholas D. Lane
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"ZeroFL: Efficient On-Device Training for Federated Learning with Local Sparsity"
7 / 7 papers shown
Title
Rapid Deployment of DNNs for Edge Computing via Structured Pruning at Initialization
Bailey J. Eccles
Leon Wong
Blesson Varghese
33
2
0
22 Apr 2024
FedImpro: Measuring and Improving Client Update in Federated Learning
Zhenheng Tang
Yonggang Zhang
S. Shi
Xinmei Tian
Tongliang Liu
Bo Han
Xiaowen Chu
FedML
17
13
0
10 Feb 2024
Federated learning compression designed for lightweight communications
Lucas Grativol Ribeiro
Mathieu Léonardon
Guillaume Muller
Virginie Fresse
Matthieu Arzel
FedML
25
3
0
23 Oct 2023
Aggregating Capacity in FL through Successive Layer Training for Computationally-Constrained Devices
Kilian Pfeiffer
R. Khalili
J. Henkel
FedML
37
5
0
26 May 2023
Protea: Client Profiling within Federated Systems using Flower
Wanru Zhao
Xinchi Qiu
Javier Fernandez-Marques
Pedro Porto Buarque de Gusmão
Nicholas D. Lane
27
6
0
03 Jul 2022
FjORD: Fair and Accurate Federated Learning under heterogeneous targets with Ordered Dropout
Samuel Horváth
Stefanos Laskaridis
Mario Almeida
Ilias Leondiadis
Stylianos I. Venieris
Nicholas D. Lane
176
267
0
26 Feb 2021
Sparsity in Deep Learning: Pruning and growth for efficient inference and training in neural networks
Torsten Hoefler
Dan Alistarh
Tal Ben-Nun
Nikoli Dryden
Alexandra Peste
MQ
141
684
0
31 Jan 2021
1