Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2208.03471
Cited By
Oversquashing in GNNs through the lens of information contraction and graph expansion
6 August 2022
P. Banerjee
Kedar Karhadkar
Yu Guang Wang
Uri Alon
Guido Montúfar
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Oversquashing in GNNs through the lens of information contraction and graph expansion"
10 / 10 papers shown
Title
When Graph Neural Networks Meet Dynamic Mode Decomposition
Dai Shi
Lequan Lin
Andi Han
Zhiyong Wang
Yi Guo
Junbin Gao
AI4CE
23
0
0
08 Oct 2024
Joint Graph Rewiring and Feature Denoising via Spectral Resonance
Jonas Linkerhagner
Cheng Shi
Ivan Dokmanić
33
0
0
13 Aug 2024
Conditional Shift-Robust Conformal Prediction for Graph Neural Network
Akansha Agrawal
UQCV
45
1
0
20 May 2024
Adaptive Message Passing: A General Framework to Mitigate Oversmoothing, Oversquashing, and Underreaching
Federico Errica
Henrik Christiansen
Viktor Zaverkin
Takashi Maruyama
Mathias Niepert
Francesco Alesiani
45
6
0
27 Dec 2023
Is Rewiring Actually Helpful in Graph Neural Networks?
Domenico Tortorella
A. Micheli
AI4CE
27
2
0
31 May 2023
Neurosymbolic AI for Reasoning over Knowledge Graphs: A Survey
L. Delong
Ramon Fernández Mir
Jacques D. Fleuriot
NAI
19
12
0
14 Feb 2023
On the Ability of Graph Neural Networks to Model Interactions Between Vertices
Noam Razin
Tom Verbin
Nadav Cohen
19
10
0
29 Nov 2022
Revisiting Over-smoothing and Over-squashing Using Ollivier-Ricci Curvature
K. Nguyen
Hieu Nong
T. Nguyen
Nhat Ho
Khuong N. Nguyen
Vinh Phu Nguyen
16
61
0
28 Nov 2022
Expander Graph Propagation
Andreea Deac
Marc Lackenby
Petar Velivcković
96
51
0
06 Oct 2022
Representation Learning on Graphs with Jumping Knowledge Networks
Keyulu Xu
Chengtao Li
Yonglong Tian
Tomohiro Sonobe
Ken-ichi Kawarabayashi
Stefanie Jegelka
GNN
229
1,935
0
09 Jun 2018
1