ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2208.03848
  4. Cited By
Information bottleneck theory of high-dimensional regression: relevancy,
  efficiency and optimality
v1v2 (latest)

Information bottleneck theory of high-dimensional regression: relevancy, efficiency and optimality

8 August 2022
Wave Ngampruetikorn
David J. Schwab
ArXiv (abs)PDFHTML

Papers citing "Information bottleneck theory of high-dimensional regression: relevancy, efficiency and optimality"

5 / 5 papers shown
Title
CLOSER: Towards Better Representation Learning for Few-Shot
  Class-Incremental Learning
CLOSER: Towards Better Representation Learning for Few-Shot Class-Incremental Learning
Junghun Oh
Sungyong Baik
Kyoung Mu Lee
CLL
82
4
0
08 Oct 2024
Generalization vs. Specialization under Concept Shift
Generalization vs. Specialization under Concept Shift
Alex Nguyen
David J. Schwab
Vudtiwat Ngampruetikorn
OOD
56
0
0
23 Sep 2024
Cauchy-Schwarz Divergence Information Bottleneck for Regression
Cauchy-Schwarz Divergence Information Bottleneck for Regression
Shujian Yu
Xi Yu
Sigurd Løkse
Robert Jenssen
José C. Príncipe
UQCV
80
5
0
27 Apr 2024
Generalized Information Bottleneck for Gaussian Variables
Generalized Information Bottleneck for Gaussian Variables
Wave Ngampruetikorn
David J. Schwab
76
1
0
31 Mar 2023
DSD$^2$: Can We Dodge Sparse Double Descent and Compress the Neural
  Network Worry-Free?
DSD2^22: Can We Dodge Sparse Double Descent and Compress the Neural Network Worry-Free?
Victor Quétu
Enzo Tartaglione
85
7
0
02 Mar 2023
1