Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2208.04856
Cited By
Fully probabilistic deep models for forward and inverse problems in parametric PDEs
9 August 2022
A. Vadeboncoeur
Ömer Deniz Akyildiz
Ieva Kazlauskaite
Mark Girolami
F. Cirak
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Fully probabilistic deep models for forward and inverse problems in parametric PDEs"
8 / 8 papers shown
Title
Sensitivity-Constrained Fourier Neural Operators for Forward and Inverse Problems in Parametric Differential Equations
Abdolmehdi Behroozi
Chaopeng Shen and
Daniel Kifer
AI4CE
17
0
0
13 May 2025
DGNO: A Novel Physics-aware Neural Operator for Solving Forward and Inverse PDE Problems based on Deep, Generative Probabilistic Modeling
Yaohua Zang
P. Koutsourelakis
AI4CE
52
0
0
10 Feb 2025
Dual Cone Gradient Descent for Training Physics-Informed Neural Networks
Youngsik Hwang
Dong-Young Lim
AI4CE
28
2
0
27 Sep 2024
A Primer on Variational Inference for Physics-Informed Deep Generative Modelling
Alex Glyn-Davies
A. Vadeboncoeur
O. Deniz Akyildiz
Ieva Kazlauskaite
Mark Girolami
PINN
58
0
0
10 Sep 2024
Physics-Aware Neural Implicit Solvers for multiscale, parametric PDEs with applications in heterogeneous media
Matthaios Chatzopoulos
P. Koutsourelakis
AI4CE
29
3
0
29 May 2024
Efficient Prior Calibration From Indirect Data
O. Deniz Akyildiz
M. Girolami
Andrew M. Stuart
A. Vadeboncoeur
36
1
0
28 May 2024
Physics-informed neural networks with hard constraints for inverse design
Lu Lu
R. Pestourie
Wenjie Yao
Zhicheng Wang
F. Verdugo
Steven G. Johnson
PINN
39
493
0
09 Feb 2021
Fourier Neural Operator for Parametric Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
203
2,281
0
18 Oct 2020
1