Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2208.07734
Cited By
Data Augmentation is a Hyperparameter: Cherry-picked Self-Supervision for Unsupervised Anomaly Detection is Creating the Illusion of Success
16 August 2022
Jaemin Yoo
Tianchen Zhao
L. Akoglu
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Data Augmentation is a Hyperparameter: Cherry-picked Self-Supervision for Unsupervised Anomaly Detection is Creating the Illusion of Success"
6 / 6 papers shown
Title
End-to-End Augmentation Hyperparameter Tuning for Self-Supervised Anomaly Detection
Jaemin Yoo
Lingxiao Zhao
L. Akoglu
30
4
0
21 Jun 2023
Exposing Outlier Exposure: What Can Be Learned From Few, One, and Zero Outlier Images
Philipp Liznerski
Lukas Ruff
Robert A. Vandermeulen
Billy Joe Franks
Klaus-Robert Muller
Marius Kloft
UQCV
45
44
0
23 May 2022
Masked Autoencoders Are Scalable Vision Learners
Kaiming He
Xinlei Chen
Saining Xie
Yanghao Li
Piotr Dollár
Ross B. Girshick
ViT
TPM
305
7,434
0
11 Nov 2021
Fully Convolutional Cross-Scale-Flows for Image-based Defect Detection
Marco Rudolph
Tom Wehrbein
Bodo Rosenhahn
Bastian Wandt
UQCV
78
208
0
06 Oct 2021
Hyperparameter Optimization: Foundations, Algorithms, Best Practices and Open Challenges
B. Bischl
Martin Binder
Michel Lang
Tobias Pielok
Jakob Richter
...
Theresa Ullmann
Marc Becker
A. Boulesteix
Difan Deng
Marius Lindauer
79
448
0
13 Jul 2021
Zero-Shot Text-to-Image Generation
Aditya A. Ramesh
Mikhail Pavlov
Gabriel Goh
Scott Gray
Chelsea Voss
Alec Radford
Mark Chen
Ilya Sutskever
VLM
255
4,777
0
24 Feb 2021
1