ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2208.07743
  4. Cited By
Langevin Diffusion Variational Inference
v1v2 (latest)

Langevin Diffusion Variational Inference

International Conference on Artificial Intelligence and Statistics (AISTATS), 2022
16 August 2022
Tomas Geffner
Justin Domke
    DiffM
ArXiv (abs)PDFHTML

Papers citing "Langevin Diffusion Variational Inference"

20 / 20 papers shown
Title
Trust Region Constrained Measure Transport in Path Space for Stochastic Optimal Control and Inference
Trust Region Constrained Measure Transport in Path Space for Stochastic Optimal Control and Inference
Denis Blessing
Julius Berner
Lorenz Richter
Carles Domingo-Enrich
Yuanqi Du
Arash Vahdat
Gerhard Neumann
100
5
0
17 Aug 2025
MDNS: Masked Diffusion Neural Sampler via Stochastic Optimal Control
MDNS: Masked Diffusion Neural Sampler via Stochastic Optimal Control
Yuchen Zhu
Wei Guo
Jaemoo Choi
Guan-Horng Liu
Yongxin Chen
Molei Tao
139
9
0
14 Aug 2025
Rethinking Losses for Diffusion Bridge Samplers
Rethinking Losses for Diffusion Bridge Samplers
Sebastian Sanokowski
Lukas Gruber
Christoph Bartmann
Sepp Hochreiter
Sebastian Lehner
DiffM
314
2
0
12 Jun 2025
Variational Formulation of the Particle Flow Particle Filter
Variational Formulation of the Particle Flow Particle Filter
Yinzhuang Yi
Jorge Cortés
Nikolay Atanasov
226
0
0
06 May 2025
Underdamped Diffusion Bridges with Applications to Sampling
Underdamped Diffusion Bridges with Applications to SamplingInternational Conference on Learning Representations (ICLR), 2025
Denis Blessing
Julius Berner
Lorenz Richter
Gerhard Neumann
DiffM
406
24
0
02 Mar 2025
End-To-End Learning of Gaussian Mixture Priors for Diffusion SamplerInternational Conference on Learning Representations (ICLR), 2025
Denis Blessing
Xiaogang Jia
Gerhard Neumann
DiffM
245
6
0
01 Mar 2025
Single-Step Consistent Diffusion Samplers
Single-Step Consistent Diffusion Samplers
Pascal Jutras-Dubé
Patrick Pynadath
Ruqi Zhang
DiffM
312
0
0
17 Feb 2025
Sequential Controlled Langevin Diffusions
Sequential Controlled Langevin DiffusionsInternational Conference on Learning Representations (ICLR), 2024
Junhua Chen
Lorenz Richter
Julius Berner
Denis Blessing
Gerhard Neumann
A. Anandkumar
302
28
0
10 Dec 2024
Learned Reference-based Diffusion Sampling for multi-modal distributions
Learned Reference-based Diffusion Sampling for multi-modal distributions
Maxence Noble
Louis Grenioux
Marylou Gabrié
Alain Durmus
DiffM
400
11
0
25 Oct 2024
Provable Convergence and Limitations of Geometric Tempering for Langevin Dynamics
Provable Convergence and Limitations of Geometric Tempering for Langevin DynamicsInternational Conference on Learning Representations (ICLR), 2024
Omar Chehab
Anna Korba
Austin Stromme
Adrien Vacher
398
8
0
13 Oct 2024
Beyond ELBOs: A Large-Scale Evaluation of Variational Methods for
  Sampling
Beyond ELBOs: A Large-Scale Evaluation of Variational Methods for Sampling
Denis Blessing
Xiaogang Jia
Johannes Esslinger
Francisco Vargas
Gerhard Neumann
511
40
0
11 Jun 2024
Differentiable Annealed Importance Sampling Minimizes The Jensen-Shannon
  Divergence Between Initial and Target Distribution
Differentiable Annealed Importance Sampling Minimizes The Jensen-Shannon Divergence Between Initial and Target Distribution
Johannes Zenn
Kushagra Pandey
148
0
0
23 May 2024
Liouville Flow Importance Sampler
Liouville Flow Importance SamplerInternational Conference on Machine Learning (ICML), 2024
Yifeng Tian
Nishant Panda
Yen Ting Lin
232
19
0
03 May 2024
Stochastic Localization via Iterative Posterior Sampling
Stochastic Localization via Iterative Posterior Sampling
Louis Grenioux
Maxence Noble
Marylou Gabrié
Alain Durmus
DiffM
248
20
0
16 Feb 2024
Iterated Denoising Energy Matching for Sampling from Boltzmann Densities
Iterated Denoising Energy Matching for Sampling from Boltzmann Densities
Tara Akhound-Sadegh
Jarrid Rector-Brooks
A. Bose
Sarthak Mittal
Pablo Lemos
...
Siamak Ravanbakhsh
Gauthier Gidel
Yoshua Bengio
Nikolay Malkin
Alexander Tong
DiffM
216
83
0
09 Feb 2024
Accelerating optimization over the space of probability measures
Accelerating optimization over the space of probability measures
Shi Chen
Wenxuan Wu
Yuhang Yao
Stephen J. Wright
302
8
0
06 Oct 2023
Diffusion Generative Flow Samplers: Improving learning signals through
  partial trajectory optimization
Diffusion Generative Flow Samplers: Improving learning signals through partial trajectory optimizationInternational Conference on Learning Representations (ICLR), 2023
Dinghuai Zhang
Ricky Tian Qi Chen
Cheng-Hao Liu
Aaron C. Courville
Yoshua Bengio
331
59
0
04 Oct 2023
Embracing the chaos: analysis and diagnosis of numerical instability in
  variational flows
Embracing the chaos: analysis and diagnosis of numerical instability in variational flowsNeural Information Processing Systems (NeurIPS), 2023
Zuheng Xu
Trevor Campbell
146
6
0
12 Jul 2023
Transport meets Variational Inference: Controlled Monte Carlo Diffusions
Transport meets Variational Inference: Controlled Monte Carlo DiffusionsInternational Conference on Learning Representations (ICLR), 2023
Francisco Vargas
Shreyas Padhy
Denis Blessing
Nikolas Nusken
DiffMOT
697
12
0
03 Jul 2023
Denoising Diffusion Samplers
Denoising Diffusion SamplersInternational Conference on Learning Representations (ICLR), 2023
Francisco Vargas
Will Grathwohl
Arnaud Doucet
DiffM
271
117
0
27 Feb 2023
1