Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2208.09432
Cited By
Federated Select: A Primitive for Communication- and Memory-Efficient Federated Learning
19 August 2022
Zachary B. Charles
Kallista A. Bonawitz
Stanislav Chiknavaryan
H. B. McMahan
Blaise Agüera y Arcas
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Federated Select: A Primitive for Communication- and Memory-Efficient Federated Learning"
6 / 6 papers shown
Title
Can Public Large Language Models Help Private Cross-device Federated Learning?
Boxin Wang
Yibo Zhang
Yuan Cao
Bo-wen Li
H. B. McMahan
Sewoong Oh
Zheng Xu
Manzil Zaheer
FedML
21
37
0
20 May 2023
Federated Automatic Differentiation
Keith Rush
Zachary B. Charles
Zachary Garrett
FedML
34
1
0
18 Jan 2023
Papaya: Practical, Private, and Scalable Federated Learning
Dzmitry Huba
John Nguyen
Kshitiz Malik
Ruiyu Zhu
Michael G. Rabbat
...
H. Srinivas
Kaikai Wang
Anthony Shoumikhin
Jesik Min
Mani Malek
FedML
105
137
0
08 Nov 2021
A Field Guide to Federated Optimization
Jianyu Wang
Zachary B. Charles
Zheng Xu
Gauri Joshi
H. B. McMahan
...
Mi Zhang
Tong Zhang
Chunxiang Zheng
Chen Zhu
Wennan Zhu
FedML
173
411
0
14 Jul 2021
Scaling Laws for Neural Language Models
Jared Kaplan
Sam McCandlish
T. Henighan
Tom B. Brown
B. Chess
R. Child
Scott Gray
Alec Radford
Jeff Wu
Dario Amodei
226
4,460
0
23 Jan 2020
FedPAQ: A Communication-Efficient Federated Learning Method with Periodic Averaging and Quantization
Amirhossein Reisizadeh
Aryan Mokhtari
Hamed Hassani
Ali Jadbabaie
Ramtin Pedarsani
FedML
159
760
0
28 Sep 2019
1