ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2208.10609
  4. Cited By
Global Concept-Based Interpretability for Graph Neural Networks via
  Neuron Analysis

Global Concept-Based Interpretability for Graph Neural Networks via Neuron Analysis

22 August 2022
Xuanyuan Han
Pietro Barbiero
Dobrik Georgiev
Lucie Charlotte Magister
Pietro Lió
    MILM
ArXivPDFHTML

Papers citing "Global Concept-Based Interpretability for Graph Neural Networks via Neuron Analysis"

24 / 24 papers shown
Title
Prediction via Shapley Value Regression
Prediction via Shapley Value Regression
Amr Alkhatib
Roman Bresson
Henrik Bostrom
Michalis Vazirgiannis
TDI
FAtt
59
0
0
07 May 2025
Framework GNN-AID: Graph Neural Network Analysis Interpretation and Defense
Framework GNN-AID: Graph Neural Network Analysis Interpretation and Defense
Kirill Lukyanov
Mikhail Drobyshevskiy
Georgii Sazonov
Mikhail Soloviov
Ilya Makarov
GNN
41
0
0
06 May 2025
Robustness questions the interpretability of graph neural networks: what to do?
Robustness questions the interpretability of graph neural networks: what to do?
Kirill Lukyanov
Georgii Sazonov
Serafim Boyarsky
Ilya Makarov
AAML
105
0
0
05 May 2025
TreeX: Generating Global Graphical GNN Explanations via Critical Subtree Extraction
Shengyao Lu
Jiuding Yang
Baochun Li
Di Niu
48
0
0
12 Mar 2025
Compositional Concept-Based Neuron-Level Interpretability for Deep Reinforcement Learning
Compositional Concept-Based Neuron-Level Interpretability for Deep Reinforcement Learning
Zeyu Jiang
Hai Huang
Xingquan Zuo
OffRL
52
0
0
02 Feb 2025
Disentangled and Self-Explainable Node Representation Learning
Disentangled and Self-Explainable Node Representation Learning
Simone Piaggesi
Andre' Panisson
Megha Khosla
23
0
0
28 Oct 2024
Decompose the model: Mechanistic interpretability in image models with
  Generalized Integrated Gradients (GIG)
Decompose the model: Mechanistic interpretability in image models with Generalized Integrated Gradients (GIG)
Yearim Kim
Sangyu Han
Sangbum Han
Nojun Kwak
53
0
0
03 Sep 2024
Interpretable Graph Neural Networks for Heterogeneous Tabular Data
Interpretable Graph Neural Networks for Heterogeneous Tabular Data
Amr Alkhatib
Henrik Bostrom
LMTD
36
1
0
14 Aug 2024
Semi-supervised Concept Bottleneck Models
Semi-supervised Concept Bottleneck Models
Lijie Hu
Tianhao Huang
Huanyi Xie
Chenyang Ren
Zhengyu Hu
Lu Yu
Lu Yu
Ping Ma
Di Wang
49
4
0
27 Jun 2024
Automated Molecular Concept Generation and Labeling with Large Language
  Models
Automated Molecular Concept Generation and Labeling with Large Language Models
Shichang Zhang
Botao Xia
Zimin Zhang
Qianli Wu
Fang Sun
Ziniu Hu
Yizhou Sun
38
0
0
13 Jun 2024
GNNAnatomy: Systematic Generation and Evaluation of Multi-Level
  Explanations for Graph Neural Networks
GNNAnatomy: Systematic Generation and Evaluation of Multi-Level Explanations for Graph Neural Networks
Hsiao-Ying Lu
Yiran Li
Ujwal Pratap Krishna Kaluvakolanu Thyagarajan
Kwan-Liu Ma
27
1
0
06 Jun 2024
MAGE: Model-Level Graph Neural Networks Explanations via Motif-based Graph Generation
MAGE: Model-Level Graph Neural Networks Explanations via Motif-based Graph Generation
Zhaoning Yu
Hongyang Gao
37
3
0
21 May 2024
View-based Explanations for Graph Neural Networks
View-based Explanations for Graph Neural Networks
Tingyang Chen
Dazhuo Qiu
Yinghui Wu
Arijit Khan
Xiangyu Ke
Yunjun Gao
33
9
0
04 Jan 2024
Concept-based Explainable Artificial Intelligence: A Survey
Concept-based Explainable Artificial Intelligence: A Survey
Eleonora Poeta
Gabriele Ciravegna
Eliana Pastor
Tania Cerquitelli
Elena Baralis
LRM
XAI
19
41
0
20 Dec 2023
Everybody Needs a Little HELP: Explaining Graphs via Hierarchical
  Concepts
Everybody Needs a Little HELP: Explaining Graphs via Hierarchical Concepts
Jonas Jürß
Lucie Charlotte Magister
Pietro Barbiero
Pietro Lió
Nikola Simidjievski
28
1
0
25 Nov 2023
GNNX-BENCH: Unravelling the Utility of Perturbation-based GNN Explainers
  through In-depth Benchmarking
GNNX-BENCH: Unravelling the Utility of Perturbation-based GNN Explainers through In-depth Benchmarking
Mert Kosan
S. Verma
Burouj Armgaan
Khushbu Pahwa
Ambuj K. Singh
Sourav Medya
Sayan Ranu
21
13
0
03 Oct 2023
Interpretable Graph Neural Networks for Tabular Data
Interpretable Graph Neural Networks for Tabular Data
Amr Alkhatib
Sofiane Ennadir
Henrik Bostrom
Michalis Vazirgiannis
LMTD
25
4
0
17 Aug 2023
It Ain't That Bad: Understanding the Mysterious Performance Drop in OOD
  Generalization for Generative Transformer Models
It Ain't That Bad: Understanding the Mysterious Performance Drop in OOD Generalization for Generative Transformer Models
Xingcheng Xu
Zihao Pan
Haipeng Zhang
Yanqing Yang
LRM
13
2
0
16 Aug 2023
Empowering Counterfactual Reasoning over Graph Neural Networks through
  Inductivity
Empowering Counterfactual Reasoning over Graph Neural Networks through Inductivity
S. Verma
Burouj Armgaan
Sourav Medya
Sayan Ranu
CML
AI4CE
19
0
0
07 Jun 2023
A Survey on Explainability of Graph Neural Networks
A Survey on Explainability of Graph Neural Networks
Jaykumar Kakkad
Jaspal Jannu
Kartik Sharma
Charu C. Aggarwal
Sourav Medya
28
23
0
02 Jun 2023
Interpretable Neural-Symbolic Concept Reasoning
Interpretable Neural-Symbolic Concept Reasoning
Pietro Barbiero
Gabriele Ciravegna
Francesco Giannini
M. Zarlenga
Lucie Charlotte Magister
Alberto Tonda
Pietro Lio'
F. Precioso
M. Jamnik
G. Marra
NAI
LRM
56
38
0
27 Apr 2023
L2XGNN: Learning to Explain Graph Neural Networks
L2XGNN: Learning to Explain Graph Neural Networks
G. Serra
Mathias Niepert
26
7
0
28 Sep 2022
Message passing all the way up
Message passing all the way up
Petar Velickovic
109
63
0
22 Feb 2022
Algorithmic Concept-based Explainable Reasoning
Algorithmic Concept-based Explainable Reasoning
Dobrik Georgiev
Pietro Barbiero
Dmitry Kazhdan
Petar Velivcković
Pietro Lió
61
16
0
15 Jul 2021
1