Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2208.10868
Cited By
AppGNN: Approximation-Aware Functional Reverse Engineering using Graph Neural Networks
23 August 2022
Tim Bücher
Lilas Alrahis
Guilherme Paim
S. Bampi
Ozgur Sinanoglu
H. Amrouch
Re-assign community
ArXiv
PDF
HTML
Papers citing
"AppGNN: Approximation-Aware Functional Reverse Engineering using Graph Neural Networks"
8 / 8 papers shown
Title
Estimating Voltage Drop: Models, Features and Data Representation Towards a Neural Surrogate
Yifei Jin
Dimitrios Koutlis
Hector Bandala
Marios Daoutis
44
0
0
07 Feb 2025
A Benchmark on Directed Graph Representation Learning in Hardware Designs
Haoyu Wang
Yinan Huang
Nan Wu
Pan Li
OOD
38
1
0
09 Oct 2024
MaliGNNoma: GNN-Based Malicious Circuit Classifier for Secure Cloud FPGAs
Lilas Alrahis
Hassan Nassar
Jonas Krautter
Dennis R. E. Gnad
Lars Bauer
Jörg Henkel
M. Tahoori
21
2
0
04 Mar 2024
Verilog-to-PyG -- A Framework for Graph Learning and Augmentation on RTL Designs
Yingjie Li
Mingju Liu
Alan Mishchenko
Cunxi Yu
16
6
0
09 Nov 2023
Graph Neural Networks for Hardware Vulnerability Analysis -- Can you Trust your GNN?
Lilas Alrahis
Ozgur Sinanoglu
14
2
0
29 Mar 2023
PoisonedGNN: Backdoor Attack on Graph Neural Networks-based Hardware Security Systems
Lilas Alrahis
Satwik Patnaik
Muhammad Abdullah Hanif
Muhammad Shafique
Ozgur Sinanoglu
14
13
0
24 Mar 2023
TrojanSAINT: Gate-Level Netlist Sampling-Based Inductive Learning for Hardware Trojan Detection
Hazem Lashen
Lilas Alrahis
J. Knechtel
Ozgur Sinanoglu
17
10
0
27 Jan 2023
Graph Neural Networks: A Powerful and Versatile Tool for Advancing Design, Reliability, and Security of ICs
Lilas Alrahis
J. Knechtel
Ozgur Sinanoglu
GNN
AI4CE
33
20
0
29 Nov 2022
1