ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2208.11311
  4. Cited By
Federated Learning via Decentralized Dataset Distillation in
  Resource-Constrained Edge Environments

Federated Learning via Decentralized Dataset Distillation in Resource-Constrained Edge Environments

24 August 2022
Rui Song
Dai Liu
Da Chen
Andreas Festag
Carsten Trinitis
Martin Schulz
Alois C. Knoll
    DD
    FedML
ArXivPDFHTML

Papers citing "Federated Learning via Decentralized Dataset Distillation in Resource-Constrained Edge Environments"

16 / 16 papers shown
Title
Towards One-shot Federated Learning: Advances, Challenges, and Future Directions
Towards One-shot Federated Learning: Advances, Challenges, and Future Directions
Flora Amato
Lingyu Qiu
Mohammad Tanveer
S. Cuomo
F. Giampaolo
F. Piccialli
FedML
43
0
0
05 May 2025
Secure Federated Data Distillation
Secure Federated Data Distillation
Marco Arazzi
Mert Cihangiroglu
S. Nicolazzo
Antonino Nocera
FedML
DD
94
0
0
19 Feb 2025
On Learning Representations for Tabular Data Distillation
On Learning Representations for Tabular Data Distillation
Inwon Kang
Parikshit Ram
Yi Zhou
Horst Samulowitz
O. Seneviratne
DD
55
0
0
23 Jan 2025
Overcoming Data and Model Heterogeneities in Decentralized Federated Learning via Synthetic Anchors
Overcoming Data and Model Heterogeneities in Decentralized Federated Learning via Synthetic Anchors
Chun-Yin Huang
Kartik Srinivas
Xin Zhang
Xiaoxiao Li
DD
48
5
0
19 May 2024
A Survey of What to Share in Federated Learning: Perspectives on Model
  Utility, Privacy Leakage, and Communication Efficiency
A Survey of What to Share in Federated Learning: Perspectives on Model Utility, Privacy Leakage, and Communication Efficiency
Jiawei Shao
Zijian Li
Wenqiang Sun
Tailin Zhou
Yuchang Sun
Lumin Liu
Zehong Lin
Yuyi Mao
Jun Zhang
FedML
26
22
0
20 Jul 2023
Towards Efficient Deep Hashing Retrieval: Condensing Your Data via Feature-Embedding Matching
Towards Efficient Deep Hashing Retrieval: Condensing Your Data via Feature-Embedding Matching
Tao Feng
Jie Zhang
Peizheng Wang
Zhijie Wang
Shengyuan Pang
DD
46
0
0
29 May 2023
V2V4Real: A Real-world Large-scale Dataset for Vehicle-to-Vehicle
  Cooperative Perception
V2V4Real: A Real-world Large-scale Dataset for Vehicle-to-Vehicle Cooperative Perception
Runsheng Xu
Xin Xia
Jinlong Li
Hanzhao Li
Shuo Zhang
...
Xiaoyu Dong
Rui Song
Hongkai Yu
Bolei Zhou
Jiaqi Ma
59
146
0
14 Mar 2023
Dataset Distillation: A Comprehensive Review
Dataset Distillation: A Comprehensive Review
Ruonan Yu
Songhua Liu
Xinchao Wang
DD
27
121
0
17 Jan 2023
Knowledge Distillation in Federated Edge Learning: A Survey
Knowledge Distillation in Federated Edge Learning: A Survey
Zhiyuan Wu
Sheng Sun
Yuwei Wang
Min Liu
Xue Jiang
Runhan Li
Bo Gao
FedML
19
4
0
14 Jan 2023
A Comprehensive Survey of Dataset Distillation
A Comprehensive Survey of Dataset Distillation
Shiye Lei
Dacheng Tao
DD
31
87
0
13 Jan 2023
Backdoor Attacks Against Dataset Distillation
Backdoor Attacks Against Dataset Distillation
Yugeng Liu
Zheng Li
Michael Backes
Yun Shen
Yang Zhang
DD
24
27
0
03 Jan 2023
Accelerating Dataset Distillation via Model Augmentation
Accelerating Dataset Distillation via Model Augmentation
Lei Zhang
Jie M. Zhang
Bowen Lei
Subhabrata Mukherjee
Xiang Pan
Bo-Lu Zhao
Caiwen Ding
Y. Li
Dongkuan Xu
DD
10
62
0
12 Dec 2022
V2X-ViT: Vehicle-to-Everything Cooperative Perception with Vision
  Transformer
V2X-ViT: Vehicle-to-Everything Cooperative Perception with Vision Transformer
Runsheng Xu
Hao Xiang
Zhengzhong Tu
Xin Xia
Ming-Hsuan Yang
Jiaqi Ma
ViT
101
356
0
20 Mar 2022
Dataset Condensation with Differentiable Siamese Augmentation
Dataset Condensation with Differentiable Siamese Augmentation
Bo-Lu Zhao
Hakan Bilen
DD
189
288
0
16 Feb 2021
Federated Learning on Non-IID Data Silos: An Experimental Study
Federated Learning on Non-IID Data Silos: An Experimental Study
Q. Li
Yiqun Diao
Quan Chen
Bingsheng He
FedML
OOD
85
936
0
03 Feb 2021
FedML: A Research Library and Benchmark for Federated Machine Learning
FedML: A Research Library and Benchmark for Federated Machine Learning
Chaoyang He
Songze Li
Jinhyun So
Xiao Zeng
Mi Zhang
...
Yang Liu
Ramesh Raskar
Qiang Yang
M. Annavaram
Salman Avestimehr
FedML
156
553
0
27 Jul 2020
1