ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2208.13197
  4. Cited By
IDP-PGFE: An Interpretable Disruption Predictor based on Physics-Guided
  Feature Extraction

IDP-PGFE: An Interpretable Disruption Predictor based on Physics-Guided Feature Extraction

28 August 2022
C. Shen
W. Zheng
Yonghua Ding
X. Ai
F. Xue
Y. Zhong
Nengchao Wang
Li Gao
Zhipeng Chen
Zhoujun Yang
Z. Chen
Y. Pan
J-Text Team
    AI4CE
ArXivPDFHTML

Papers citing "IDP-PGFE: An Interpretable Disruption Predictor based on Physics-Guided Feature Extraction"

2 / 2 papers shown
Title
Disruption Precursor Onset Time Study Based on Semi-supervised Anomaly
  Detection
Disruption Precursor Onset Time Study Based on Semi-supervised Anomaly Detection
X. Ai
W. Zheng
Ming Zhang
Dalong Chen
C. Shen
...
Zhipeng Chen
Zhongyong Chen
Yonghua Ding
Y. Pan
J-Text Team
10
3
0
27 Mar 2023
Scenario adaptive disruption prediction study for next generation
  burning-plasma tokamaks
Scenario adaptive disruption prediction study for next generation burning-plasma tokamaks
J. Zhu
C. Rea
R. Granetz
E. Marmar
K. Montes
...
B. Shen
B. Xiao
D. Humphreys
J. Barr
O. Meneghini
20
16
0
18 Sep 2021
1