ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2208.13585
  4. Cited By
Spatio-Temporal Wind Speed Forecasting using Graph Networks and Novel
  Transformer Architectures

Spatio-Temporal Wind Speed Forecasting using Graph Networks and Novel Transformer Architectures

29 August 2022
Lars Odegaard Bentsen
N. Warakagoda
R. Stenbro
P. Engelstad
    AI4TS
ArXivPDFHTML

Papers citing "Spatio-Temporal Wind Speed Forecasting using Graph Networks and Novel Transformer Architectures"

4 / 4 papers shown
Title
DeepMIDE: A Multivariate Spatio-Temporal Method for Ultra-Scale Offshore
  Wind Energy Forecasting
DeepMIDE: A Multivariate Spatio-Temporal Method for Ultra-Scale Offshore Wind Energy Forecasting
Feng Ye
Xinxi Zhang
Michael Stein
Ahmed Aziz Ezzat
23
0
0
26 Oct 2024
FECAM: Frequency Enhanced Channel Attention Mechanism for Time Series
  Forecasting
FECAM: Frequency Enhanced Channel Attention Mechanism for Time Series Forecasting
Maowei Jiang
Pengyu Zeng
Kai-Ming Wang
Huan Liu
Wenbo Chen
Haoran Liu
AI4TS
19
49
0
02 Dec 2022
Deep Graph Convolutional Networks for Wind Speed Prediction
Deep Graph Convolutional Networks for Wind Speed Prediction
Tomasz Stanczyk
S. Mehrkanoon
GNN
91
28
0
25 Jan 2021
Informer: Beyond Efficient Transformer for Long Sequence Time-Series
  Forecasting
Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting
Haoyi Zhou
Shanghang Zhang
J. Peng
Shuai Zhang
Jianxin Li
Hui Xiong
Wan Zhang
AI4TS
167
3,799
0
14 Dec 2020
1