ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2209.00458
  4. Cited By
An Incremental Learning framework for Large-scale CTR Prediction

An Incremental Learning framework for Large-scale CTR Prediction

ACM Conference on Recommender Systems (RecSys), 2022
1 September 2022
Petros Katsileros
Nikiforos Mandilaras
Dimitrios Mallis
Vassilis Pitsikalis
Stavros Theodorakis
Gil Chamiel Deeplab - Greece
    CLL
ArXiv (abs)PDFHTML

Papers citing "An Incremental Learning framework for Large-scale CTR Prediction"

4 / 4 papers shown
MEGG: Replay via Maximally Extreme GGscore in Incremental Learning for Neural Recommendation Models
MEGG: Replay via Maximally Extreme GGscore in Incremental Learning for Neural Recommendation Models
Yunxiao Shi
Shuo Yang
Haimin Zhang
Li Wang
Yongze Wang
Qiang Wu
Min Xu
168
2
0
09 Sep 2025
Feature Staleness Aware Incremental Learning for CTR Prediction
Feature Staleness Aware Incremental Learning for CTR PredictionInternational Joint Conference on Artificial Intelligence (IJCAI), 2023
Zhikai Wang
Yanyan Shen
Zibin Zhang
Kangyi Lin
291
2
0
29 Apr 2025
Multi-Epoch learning with Data Augmentation for Deep Click-Through Rate
  Prediction
Multi-Epoch learning with Data Augmentation for Deep Click-Through Rate Prediction
Zhongxiang Fan
Zhaocheng Liu
Jian Liang
Dongying Kong
Han Li
Peng Jiang
Shuang Li
Kun Gai
256
1
0
27 Jun 2024
Retrieval and Distill: A Temporal Data Shift-Free Paradigm for Online Recommendation System
Retrieval and Distill: A Temporal Data Shift-Free Paradigm for Online Recommendation System
Lei Zheng
Ning Li
Weinan Zhang
Yong Yu
AI4TS
357
0
0
24 Apr 2024
1