ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2209.01941
  4. Cited By
Deep importance sampling using tensor trains with application to a
  priori and a posteriori rare event estimation

Deep importance sampling using tensor trains with application to a priori and a posteriori rare event estimation

5 September 2022
Tiangang Cui
S. Dolgov
Robert Scheichl
ArXivPDFHTML

Papers citing "Deep importance sampling using tensor trains with application to a priori and a posteriori rare event estimation"

3 / 3 papers shown
Title
A Direct Importance Sampling-based Framework for Rare Event Uncertainty
  Quantification in Non-Gaussian Spaces
A Direct Importance Sampling-based Framework for Rare Event Uncertainty Quantification in Non-Gaussian Spaces
Elsayed M. Eshra
Konstantinos G. Papakonstantinou
Hamed Nikbakht
21
0
0
23 May 2024
Sequential transport maps using SoS density estimation and
  $α$-divergences
Sequential transport maps using SoS density estimation and ααα-divergences
Benjamin Zanger
Tiangang Cui
Martin Schreiber
O. Zahm
28
1
0
27 Feb 2024
Fourier Neural Operator for Parametric Partial Differential Equations
Fourier Neural Operator for Parametric Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
203
2,272
0
18 Oct 2020
1