ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2209.03112
  4. Cited By
Multitask Learning via Shared Features: Algorithms and Hardness

Multitask Learning via Shared Features: Algorithms and Hardness

Annual Conference Computational Learning Theory (COLT), 2022
7 September 2022
Konstantina Bairaktari
Guy Blanc
Li-Yang Tan
Jonathan R. Ullman
Lydia Zakynthinou
ArXiv (abs)PDFHTML

Papers citing "Multitask Learning via Shared Features: Algorithms and Hardness"

2 / 2 papers shown
Transformers are almost optimal metalearners for linear classification
Transformers are almost optimal metalearners for linear classification
Roey Magen
Gal Vardi
153
0
0
22 Oct 2025
Metalearning with Very Few Samples Per Task
Metalearning with Very Few Samples Per Task
Maryam Aliakbarpour
Konstantina Bairaktari
Gavin Brown
Adam D. Smith
Nathan Srebro
Jonathan Ullman
VLM
328
11
0
21 Dec 2023
1