Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2209.05315
Cited By
Residual-Quantile Adjustment for Adaptive Training of Physics-informed Neural Network
9 September 2022
Jiayue Han
Zhiqiang Cai
Zhiyou Wu
Xiang Zhou
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Residual-Quantile Adjustment for Adaptive Training of Physics-informed Neural Network"
7 / 7 papers shown
Title
PI-VEGAN: Physics Informed Variational Embedding Generative Adversarial Networks for Stochastic Differential Equations
R. Gao
Yufeng Wang
Min Yang
Chuanjun Chen
GAN
24
2
0
21 Jul 2023
Investigating and Mitigating Failure Modes in Physics-informed Neural Networks (PINNs)
S. Basir
PINN
AI4CE
22
21
0
20 Sep 2022
Physics and Equality Constrained Artificial Neural Networks: Application to Forward and Inverse Problems with Multi-fidelity Data Fusion
S. Basir
Inanc Senocak
PINN
AI4CE
34
68
0
30 Sep 2021
Meta-learning PINN loss functions
Apostolos F. Psaros
Kenji Kawaguchi
George Karniadakis
PINN
35
96
0
12 Jul 2021
Efficient training of physics-informed neural networks via importance sampling
M. A. Nabian
R. J. Gladstone
Hadi Meidani
DiffM
PINN
69
220
0
26 Apr 2021
Parallel Physics-Informed Neural Networks via Domain Decomposition
K. Shukla
Ameya Dilip Jagtap
George Karniadakis
PINN
98
272
0
20 Apr 2021
Physics-informed neural networks with hard constraints for inverse design
Lu Lu
R. Pestourie
Wenjie Yao
Zhicheng Wang
F. Verdugo
Steven G. Johnson
PINN
39
489
0
09 Feb 2021
1