Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2209.05578
Cited By
Cocktail Party Attack: Breaking Aggregation-Based Privacy in Federated Learning using Independent Component Analysis
12 September 2022
Sanjay Kariyappa
Chuan Guo
Kiwan Maeng
Wenjie Xiong
G. E. Suh
Moinuddin K. Qureshi
Hsien-Hsin S. Lee
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Cocktail Party Attack: Breaking Aggregation-Based Privacy in Federated Learning using Independent Component Analysis"
18 / 18 papers shown
Title
Cutting Through Privacy: A Hyperplane-Based Data Reconstruction Attack in Federated Learning
Francesco Diana
André Nusser
Chuan Xu
Giovanni Neglia
27
0
0
15 May 2025
ReCIT: Reconstructing Full Private Data from Gradient in Parameter-Efficient Fine-Tuning of Large Language Models
Jin Xie
Ruishi He
Songze Li
Xiaojun Jia
Shouling Ji
SILM
AAML
68
0
0
29 Apr 2025
Privacy Attack in Federated Learning is Not Easy: An Experimental Study
Hangyu Zhu
Liyuan Huang
Zhenping Xie
FedML
26
0
0
28 Sep 2024
Exploring User-level Gradient Inversion with a Diffusion Prior
Zhuohang Li
Andrew Lowy
Jing Liu
T. Koike-Akino
Bradley Malin
K. Parsons
Ye Wang
DiffM
38
0
0
11 Sep 2024
Breaking Secure Aggregation: Label Leakage from Aggregated Gradients in Federated Learning
Zhibo Wang
Zhiwei Chang
Jiahui Hu
Xiaoyi Pang
Jiacheng Du
Yongle Chen
Kui Ren
FedML
29
1
0
22 Jun 2024
Dealing Doubt: Unveiling Threat Models in Gradient Inversion Attacks under Federated Learning, A Survey and Taxonomy
Yichuan Shi
Olivera Kotevska
Viktor Reshniak
Abhishek Singh
Ramesh Raskar
AAML
43
1
0
16 May 2024
SPEAR:Exact Gradient Inversion of Batches in Federated Learning
Dimitar I. Dimitrov
Maximilian Baader
Mark Niklas Muller
Martin Vechev
FedML
36
5
0
06 Mar 2024
Privacy Attacks in Decentralized Learning
Abdellah El Mrini
Edwige Cyffers
A. Bellet
27
2
0
15 Feb 2024
Data Reconstruction Attacks and Defenses: A Systematic Evaluation
Sheng Liu
Zihan Wang
Yuxiao Chen
Qi Lei
AAML
MIACV
61
4
0
13 Feb 2024
Beyond Gradient and Priors in Privacy Attacks: Leveraging Pooler Layer Inputs of Language Models in Federated Learning
Jianwei Li
Sheng Liu
Qi Lei
PILM
SILM
AAML
30
4
0
10 Dec 2023
Federated Learning with Differential Privacy for End-to-End Speech Recognition
Martin Pelikan
Sheikh Shams Azam
Vitaly Feldman
Jan Honza Silovsky
Kunal Talwar
Tatiana Likhomanenko
37
8
0
29 Sep 2023
SRATTA : Sample Re-ATTribution Attack of Secure Aggregation in Federated Learning
Tanguy Marchand
Regis Loeb
Ulysse Marteau-Ferey
Jean Ogier du Terrail
Arthur Pignet
FedML
42
4
0
13 Jun 2023
Information Flow Control in Machine Learning through Modular Model Architecture
Trishita Tiwari
Suchin Gururangan
Chuan Guo
Weizhe Hua
Sanjay Kariyappa
Udit Gupta
Wenjie Xiong
Kiwan Maeng
Hsien-Hsin S. Lee
G. E. Suh
19
6
0
05 Jun 2023
Hiding in Plain Sight: Disguising Data Stealing Attacks in Federated Learning
Kostadin Garov
Dimitar I. Dimitrov
Nikola Jovanović
Martin Vechev
AAML
FedML
34
7
0
05 Jun 2023
The Resource Problem of Using Linear Layer Leakage Attack in Federated Learning
Joshua C. Zhao
A. Elkordy
Atul Sharma
Yahya H. Ezzeldin
A. Avestimehr
S. Bagchi
FedML
40
12
0
27 Mar 2023
LOKI: Large-scale Data Reconstruction Attack against Federated Learning through Model Manipulation
Joshua C. Zhao
Atul Sharma
A. Elkordy
Yahya H. Ezzeldin
Salman Avestimehr
S. Bagchi
AAML
FedML
32
28
0
21 Mar 2023
Fishing for User Data in Large-Batch Federated Learning via Gradient Magnification
Yuxin Wen
Jonas Geiping
Liam H. Fowl
Micah Goldblum
Tom Goldstein
FedML
89
92
0
01 Feb 2022
When the Curious Abandon Honesty: Federated Learning Is Not Private
Franziska Boenisch
Adam Dziedzic
R. Schuster
Ali Shahin Shamsabadi
Ilia Shumailov
Nicolas Papernot
FedML
AAML
69
181
0
06 Dec 2021
1