ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2209.09056
  4. Cited By
Concept Embedding Models: Beyond the Accuracy-Explainability Trade-Off

Concept Embedding Models: Beyond the Accuracy-Explainability Trade-Off

19 September 2022
M. Zarlenga
Pietro Barbiero
Gabriele Ciravegna
G. Marra
Francesco Giannini
Michelangelo Diligenti
Z. Shams
F. Precioso
S. Melacci
Adrian Weller
Pietro Lio'
M. Jamnik
ArXivPDFHTML

Papers citing "Concept Embedding Models: Beyond the Accuracy-Explainability Trade-Off"

3 / 3 papers shown
Title
Energy-Based Concept Bottleneck Models: Unifying Prediction, Concept Intervention, and Probabilistic Interpretations
Energy-Based Concept Bottleneck Models: Unifying Prediction, Concept Intervention, and Probabilistic Interpretations
Xin-Chao Xu
Yi Qin
Lu Mi
Hao Wang
X. Li
52
9
0
03 Jan 2025
Learning Discrete Concepts in Latent Hierarchical Models
Learning Discrete Concepts in Latent Hierarchical Models
Lingjing Kong
Guan-Hong Chen
Biwei Huang
Eric P. Xing
Yuejie Chi
Kun Zhang
36
4
0
01 Jun 2024
On Completeness-aware Concept-Based Explanations in Deep Neural Networks
On Completeness-aware Concept-Based Explanations in Deep Neural Networks
Chih-Kuan Yeh
Been Kim
Sercan Ö. Arik
Chun-Liang Li
Tomas Pfister
Pradeep Ravikumar
FAtt
115
293
0
17 Oct 2019
1