ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2209.09493
  4. Cited By
A framework for benchmarking clustering algorithms

A framework for benchmarking clustering algorithms

20 September 2022
M. Gagolewski
ArXivPDFHTML

Papers citing "A framework for benchmarking clustering algorithms"

9 / 9 papers shown
Title
Model-free Estimation of Latent Structure via Multiscale Nonparametric Maximum Likelihood
Model-free Estimation of Latent Structure via Multiscale Nonparametric Maximum Likelihood
Bryon Aragam
Ruiyi Yang
45
0
0
29 Oct 2024
MNIST-Nd: a set of naturalistic datasets to benchmark clustering across
  dimensions
MNIST-Nd: a set of naturalistic datasets to benchmark clustering across dimensions
Polina Turishcheva
Laura Hansel
Martin Ritzert
Marissa A. Weis
Alexander S. Ecker
27
1
0
21 Oct 2024
Feature graphs for interpretable unsupervised tree ensembles:
  centrality, interaction, and application in disease subtyping
Feature graphs for interpretable unsupervised tree ensembles: centrality, interaction, and application in disease subtyping
Christel Sirocchi
Martin Urschler
Bastian Pfeifer
32
2
0
27 Apr 2024
On the Use of Relative Validity Indices for Comparing Clustering
  Approaches
On the Use of Relative Validity Indices for Comparing Clustering Approaches
Luke W. Yerbury
R. Campello
G. C. Livingston
Mark Goldsworthy
Lachlan OÑeil
30
1
0
16 Apr 2024
MMM and MMMSynth: Clustering of heterogeneous tabular data, and
  synthetic data generation
MMM and MMMSynth: Clustering of heterogeneous tabular data, and synthetic data generation
Chandrani Kumari
Rahul Siddharthan
13
0
0
30 Oct 2023
Hierarchical clustering with OWA-based linkages, the Lance-Williams
  formula, and dendrogram inversions
Hierarchical clustering with OWA-based linkages, the Lance-Williams formula, and dendrogram inversions
M. Gagolewski
Anna Cena
S. James
G. Beliakov
14
3
0
10 Mar 2023
Clustering with minimum spanning trees: How good can it be?
Clustering with minimum spanning trees: How good can it be?
M. Gagolewski
Anna Cena
Maciej Bartoszuk
Lukasz Brzozowski
13
7
0
10 Mar 2023
Genie: A new, fast, and outlier-resistant hierarchical clustering
  algorithm
Genie: A new, fast, and outlier-resistant hierarchical clustering algorithm
M. Gagolewski
Maciej Bartoszuk
Anna Cena
35
72
0
13 Sep 2022
Normalised clustering accuracy: An asymmetric external cluster validity
  measure
Normalised clustering accuracy: An asymmetric external cluster validity measure
M. Gagolewski
13
2
0
07 Sep 2022
1