ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2209.10877
  4. Cited By
Beyond Voxel Prediction Uncertainty: Identifying brain lesions you can
  trust

Beyond Voxel Prediction Uncertainty: Identifying brain lesions you can trust

22 September 2022
Benjamin Lambert
Florence Forbes
Senan Doyle
A. Tucholka
M. Dojat
    UQCVMedIm
ArXiv (abs)PDFHTML

Papers citing "Beyond Voxel Prediction Uncertainty: Identifying brain lesions you can trust"

4 / 4 papers shown
Title
Interpretability of Uncertainty: Exploring Cortical Lesion Segmentation
  in Multiple Sclerosis
Interpretability of Uncertainty: Exploring Cortical Lesion Segmentation in Multiple Sclerosis
Nataliia Molchanova
A. Cagol
Pedro M. Gordaliza
Mario Ocampo Pineda
Po--Jui Lu
...
Xinjie Chen
Adrien Depeursinge
Cristina Granziera
Henning Müller
Meritxell Bach Cuadra
175
1
0
08 Jul 2024
Structural-Based Uncertainty in Deep Learning Across Anatomical Scales:
  Analysis in White Matter Lesion Segmentation
Structural-Based Uncertainty in Deep Learning Across Anatomical Scales: Analysis in White Matter Lesion Segmentation
Nataliia Molchanova
Vatsal Raina
A. Malinin
Francesco La Rosa
Adrien Depeursinge
Mark Gales
Cristina Granziera
Henning Muller
Mara Graziani
Meritxell Bach Cuadra
169
8
0
15 Nov 2023
Novel structural-scale uncertainty measures and error retention curves:
  application to multiple sclerosis
Novel structural-scale uncertainty measures and error retention curves: application to multiple sclerosisIEEE International Symposium on Biomedical Imaging (ISBI), 2022
Nataliia Molchanova
Vatsal Raina
A. Malinin
Francesco La Rosa
Henning Muller
Mark Gales
Cristina Granziera
Mara Graziani
Meritxell Bach Cuadra
169
11
0
09 Nov 2022
Trustworthy clinical AI solutions: a unified review of uncertainty
  quantification in deep learning models for medical image analysis
Trustworthy clinical AI solutions: a unified review of uncertainty quantification in deep learning models for medical image analysis
Benjamin Lambert
Florence Forbes
A. Tucholka
Senan Doyle
Harmonie Dehaene
M. Dojat
222
134
0
05 Oct 2022
1