ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2209.10974
  4. Cited By
Identifiability and generalizability from multiple experts in Inverse
  Reinforcement Learning

Identifiability and generalizability from multiple experts in Inverse Reinforcement Learning

22 September 2022
Paul Rolland
Luca Viano
Norman Schuerhoff
Boris Nikolov
V. Cevher
    OffRL
ArXivPDFHTML

Papers citing "Identifiability and generalizability from multiple experts in Inverse Reinforcement Learning"

3 / 3 papers shown
Title
When Demonstrations Meet Generative World Models: A Maximum Likelihood
  Framework for Offline Inverse Reinforcement Learning
When Demonstrations Meet Generative World Models: A Maximum Likelihood Framework for Offline Inverse Reinforcement Learning
Siliang Zeng
Chenliang Li
Alfredo García
Min-Fong Hong
OffRL
24
13
0
15 Feb 2023
Environment Design for Inverse Reinforcement Learning
Environment Design for Inverse Reinforcement Learning
Thomas Kleine Buening
Victor Villin
Christos Dimitrakakis
30
1
0
26 Oct 2022
Reward (Mis)design for Autonomous Driving
Reward (Mis)design for Autonomous Driving
W. B. Knox
A. Allievi
Holger Banzhaf
Felix Schmitt
Peter Stone
67
112
0
28 Apr 2021
1