Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2209.11379
Cited By
Do Current Multi-Task Optimization Methods in Deep Learning Even Help?
23 September 2022
Derrick Xin
Behrooz Ghorbani
Ankush Garg
Orhan Firat
Justin Gilmer
MoMe
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Do Current Multi-Task Optimization Methods in Deep Learning Even Help?"
11 / 11 papers shown
Title
Unlearning as multi-task optimization: A normalized gradient difference approach with an adaptive learning rate
Zhiqi Bu
Xiaomeng Jin
Bhanukiran Vinzamuri
Anil Ramakrishna
Kai-Wei Chang
V. Cevher
Mingyi Hong
MU
77
6
0
29 Oct 2024
Federated Communication-Efficient Multi-Objective Optimization
Baris Askin
Pranay Sharma
Gauri Joshi
Carlee Joe-Wong
FedML
36
1
0
21 Oct 2024
Upsample or Upweight? Balanced Training on Heavily Imbalanced Datasets
Tianjian Li
Haoran Xu
Weiting Tan
Kenton Murray
Daniel Khashabi
35
1
0
06 Oct 2024
Can Optimization Trajectories Explain Multi-Task Transfer?
David Mueller
Mark Dredze
Nicholas Andrews
35
1
0
26 Aug 2024
Enhancing Domain Adaptation through Prompt Gradient Alignment
Hoang Phan
Lam C. Tran
Quyen Tran
Trung Le
38
0
0
13 Jun 2024
FAMO: Fast Adaptive Multitask Optimization
B. Liu
Yihao Feng
Peter Stone
Qian Liu
19
26
0
06 Jun 2023
Differentiable Random Partition Models
Thomas M. Sutter
Alain Ryser
Joram Liebeskind
Julia E. Vogt
26
3
0
26 May 2023
Scaling Laws for Multilingual Neural Machine Translation
Patrick Fernandes
Behrooz Ghorbani
Xavier Garcia
Markus Freitag
Orhan Firat
17
28
0
19 Feb 2023
In Defense of the Unitary Scalarization for Deep Multi-Task Learning
Vitaly Kurin
Alessandro De Palma
Ilya Kostrikov
Shimon Whiteson
M. P. Kumar
17
71
0
11 Jan 2022
Bandits Don't Follow Rules: Balancing Multi-Facet Machine Translation with Multi-Armed Bandits
Julia Kreutzer
David Vilar
Artem Sokolov
43
15
0
13 Oct 2021
Efficiently Identifying Task Groupings for Multi-Task Learning
Christopher Fifty
Ehsan Amid
Zhe Zhao
Tianhe Yu
Rohan Anil
Chelsea Finn
201
235
1
10 Sep 2021
1