ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2209.11762
17
1

Towards Auditing Unsupervised Learning Algorithms and Human Processes For Fairness

20 September 2022
Ian Davidson
S. S. Ravi
    FaML
ArXivPDFHTML
Abstract

Existing work on fairness typically focuses on making known machine learning algorithms fairer. Fair variants of classification, clustering, outlier detection and other styles of algorithms exist. However, an understudied area is the topic of auditing an algorithm's output to determine fairness. Existing work has explored the two group classification problem for binary protected status variables using standard definitions of statistical parity. Here we build upon the area of auditing by exploring the multi-group setting under more complex definitions of fairness.

View on arXiv
Comments on this paper