ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2209.12948
  4. Cited By
Developing Machine-Learned Potentials for Coarse-Grained Molecular
  Simulations: Challenges and Pitfalls

Developing Machine-Learned Potentials for Coarse-Grained Molecular Simulations: Challenges and Pitfalls

26 September 2022
E. Ricci
George Giannakopoulos
V. Karkaletsis
D. Theodorou
Niki Vergadou
    AI4CE
ArXivPDFHTML

Papers citing "Developing Machine-Learned Potentials for Coarse-Grained Molecular Simulations: Challenges and Pitfalls"

3 / 3 papers shown
Title
Statistically Optimal Force Aggregation for Coarse-Graining Molecular
  Dynamics
Statistically Optimal Force Aggregation for Coarse-Graining Molecular Dynamics
Andreas Krämer
Aleksander E. P. Durumeric
N. Charron
Yaoyi Chen
C. Clementi
Frank Noé
AI4CE
17
20
0
14 Feb 2023
Investigation of Machine Learning-based Coarse-Grained Mapping Schemes
  for Organic Molecules
Investigation of Machine Learning-based Coarse-Grained Mapping Schemes for Organic Molecules
Dimitris Nasikas
E. Ricci
George Giannakopoulos
V. Karkaletsis
D. Theodorou
Niki Vergadou
28
6
0
26 Sep 2022
Coarse Graining Molecular Dynamics with Graph Neural Networks
Coarse Graining Molecular Dynamics with Graph Neural Networks
B. Husic
N. Charron
Dominik Lemm
Jiang Wang
Adria Pérez
...
Yaoyi Chen
Simon Olsson
Gianni de Fabritiis
Frank Noé
C. Clementi
AI4CE
35
158
0
22 Jul 2020
1