Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2209.13511
Cited By
Phy-Taylor: Physics-Model-Based Deep Neural Networks
27 September 2022
Y. Mao
L. Sha
Huajie Shao
Yuliang Gu
Qixin Wang
Tarek F. Abdelzaher
PINN
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Phy-Taylor: Physics-Model-Based Deep Neural Networks"
8 / 8 papers shown
Title
Physics-informed neural networks with hard constraints for inverse design
Lu Lu
R. Pestourie
Wenjie Yao
Zhicheng Wang
F. Verdugo
Steven G. Johnson
PINN
39
489
0
09 Feb 2021
Fourier Neural Operator for Parametric Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
203
2,272
0
18 Oct 2020
An Investigation of Why Overparameterization Exacerbates Spurious Correlations
Shiori Sagawa
Aditi Raghunathan
Pang Wei Koh
Percy Liang
144
369
0
09 May 2020
Integrating Scientific Knowledge with Machine Learning for Engineering and Environmental Systems
J. Willard
X. Jia
Shaoming Xu
M. Steinbach
Vipin Kumar
AI4CE
80
385
0
10 Mar 2020
Lagrangian Neural Networks
M. Cranmer
S. Greydanus
Stephan Hoyer
Peter W. Battaglia
D. Spergel
S. Ho
PINN
121
419
0
10 Mar 2020
Disentangling Physical Dynamics from Unknown Factors for Unsupervised Video Prediction
Vincent Le Guen
Nicolas Thome
AI4CE
PINN
78
287
0
03 Mar 2020
Information Theoretic Model Predictive Control: Theory and Applications to Autonomous Driving
Grady Williams
P. Drews
Brian Goldfain
James M. Rehg
Evangelos A. Theodorou
76
260
0
07 Jul 2017
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
234
1,809
0
25 Nov 2016
1