ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2209.15514
  4. Cited By
Cooperation in the Latent Space: The Benefits of Adding Mixture
  Components in Variational Autoencoders

Cooperation in the Latent Space: The Benefits of Adding Mixture Components in Variational Autoencoders

30 September 2022
Oskar Kviman
Ricky Molén
A. Hotti
Semih Kurt
Victor Elvira
J. Lagergren
ArXivPDFHTML

Papers citing "Cooperation in the Latent Space: The Benefits of Adding Mixture Components in Variational Autoencoders"

8 / 8 papers shown
Title
Efficient Mixture Learning in Black-Box Variational Inference
Efficient Mixture Learning in Black-Box Variational Inference
A. Hotti
Oskar Kviman
Ricky Molén
Victor Elvira
Jens Lagergren
28
1
0
11 Jun 2024
Improving Variational Autoencoder Estimation from Incomplete Data with
  Mixture Variational Families
Improving Variational Autoencoder Estimation from Incomplete Data with Mixture Variational Families
Vaidotas Šimkus
Michael U. Gutmann
32
2
0
05 Mar 2024
Indirectly Parameterized Concrete Autoencoders
Indirectly Parameterized Concrete Autoencoders
Alfred Nilsson
Klas Wijk
Sai Bharath Chandra Gutha
Erik Englesson
A. Hotti
Carlo Saccardi
Oskar Kviman
Jens Lagergren
Ricardo Vinuesa
Hossein Azizpour
25
1
0
01 Mar 2024
InVA: Integrative Variational Autoencoder for Harmonization of
  Multi-modal Neuroimaging Data
InVA: Integrative Variational Autoencoder for Harmonization of Multi-modal Neuroimaging Data
Bowen Lei
Rajarshi Guhaniyogi
Krishnendu Chandra
Aaron Scheffler
Bani Mallick
10
0
0
05 Feb 2024
Improved Variational Bayesian Phylogenetic Inference using Mixtures
Improved Variational Bayesian Phylogenetic Inference using Mixtures
Oskar Kviman
Ricky Molén
Jens Lagergren
15
5
0
02 Oct 2023
Multiple Importance Sampling ELBO and Deep Ensembles of Variational
  Approximations
Multiple Importance Sampling ELBO and Deep Ensembles of Variational Approximations
Oskar Kviman
Harald Melin
Hazal Koptagel
Victor Elvira
J. Lagergren
DRL
63
17
0
22 Feb 2022
Pixel Recurrent Neural Networks
Pixel Recurrent Neural Networks
Aaron van den Oord
Nal Kalchbrenner
Koray Kavukcuoglu
SSeg
GAN
225
2,542
0
25 Jan 2016
Gradient Importance Sampling
Gradient Importance Sampling
Ingmar Schuster
14
24
0
21 Jul 2015
1