Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2209.15514
Cited By
Cooperation in the Latent Space: The Benefits of Adding Mixture Components in Variational Autoencoders
30 September 2022
Oskar Kviman
Ricky Molén
A. Hotti
Semih Kurt
Victor Elvira
J. Lagergren
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Cooperation in the Latent Space: The Benefits of Adding Mixture Components in Variational Autoencoders"
8 / 8 papers shown
Title
Efficient Mixture Learning in Black-Box Variational Inference
A. Hotti
Oskar Kviman
Ricky Molén
Victor Elvira
Jens Lagergren
28
1
0
11 Jun 2024
Improving Variational Autoencoder Estimation from Incomplete Data with Mixture Variational Families
Vaidotas Šimkus
Michael U. Gutmann
32
2
0
05 Mar 2024
Indirectly Parameterized Concrete Autoencoders
Alfred Nilsson
Klas Wijk
Sai Bharath Chandra Gutha
Erik Englesson
A. Hotti
Carlo Saccardi
Oskar Kviman
Jens Lagergren
Ricardo Vinuesa
Hossein Azizpour
25
1
0
01 Mar 2024
InVA: Integrative Variational Autoencoder for Harmonization of Multi-modal Neuroimaging Data
Bowen Lei
Rajarshi Guhaniyogi
Krishnendu Chandra
Aaron Scheffler
Bani Mallick
10
0
0
05 Feb 2024
Improved Variational Bayesian Phylogenetic Inference using Mixtures
Oskar Kviman
Ricky Molén
Jens Lagergren
15
5
0
02 Oct 2023
Multiple Importance Sampling ELBO and Deep Ensembles of Variational Approximations
Oskar Kviman
Harald Melin
Hazal Koptagel
Victor Elvira
J. Lagergren
DRL
63
17
0
22 Feb 2022
Pixel Recurrent Neural Networks
Aaron van den Oord
Nal Kalchbrenner
Koray Kavukcuoglu
SSeg
GAN
225
2,542
0
25 Jan 2016
Gradient Importance Sampling
Ingmar Schuster
14
24
0
21 Jul 2015
1