ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2209.15596
  4. Cited By
Individual Privacy Accounting with Gaussian Differential Privacy
v1v2 (latest)

Individual Privacy Accounting with Gaussian Differential Privacy

International Conference on Learning Representations (ICLR), 2022
30 September 2022
A. Koskela
Marlon Tobaben
Antti Honkela
ArXiv (abs)PDFHTML

Papers citing "Individual Privacy Accounting with Gaussian Differential Privacy"

14 / 14 papers shown
Title
Private-RAG: Answering Multiple Queries with LLMs while Keeping Your Data Private
Private-RAG: Answering Multiple Queries with LLMs while Keeping Your Data Private
Ruihan Wu
Erchi Wang
Zhiyuan Zhang
Yu-Xiang Wang
SILM
244
0
0
10 Nov 2025
Accuracy-First Rényi Differential Privacy and Post-Processing Immunity
Accuracy-First Rényi Differential Privacy and Post-Processing Immunity
Ossi Raisa
A. Koskela
Antti Honkela
93
0
0
26 Sep 2025
DP-DocLDM: Differentially Private Document Image Generation using Latent Diffusion Models
DP-DocLDM: Differentially Private Document Image Generation using Latent Diffusion ModelsIEEE International Conference on Document Analysis and Recognition (ICDAR), 2025
S. Saifullah
S. Agne
Andreas Dengel
Sheraz Ahmed
SyDa
137
0
0
06 Aug 2025
Gaussian DP for Reporting Differential Privacy Guarantees in Machine Learning
Gaussian DP for Reporting Differential Privacy Guarantees in Machine Learning
Juan Felipe Gomez
B. Kulynych
G. Kaissis
Jamie Hayes
Jamie Hayes
Borja Balle
Antti Honkela
392
0
0
13 Mar 2025
LMO-DP: Optimizing the Randomization Mechanism for Differentially
  Private Fine-Tuning (Large) Language Models
LMO-DP: Optimizing the Randomization Mechanism for Differentially Private Fine-Tuning (Large) Language Models
Qin Yang
Meisam Mohammady
Han Wang
Ali Payani
Ashish Kundu
Kai Shu
Yan Yan
Yuan Hong
265
2
0
29 May 2024
Privacy Amplification for the Gaussian Mechanism via Bounded Support
Privacy Amplification for the Gaussian Mechanism via Bounded Support
Shengyuan Hu
Saeed Mahloujifar
Virginia Smith
Kamalika Chaudhuri
Chuan Guo
FedML
209
1
0
07 Mar 2024
SoK: Memorisation in machine learning
SoK: Memorisation in machine learning
Dmitrii Usynin
Moritz Knolle
Georgios Kaissis
313
1
0
06 Nov 2023
PrIeD-KIE: Towards Privacy Preserved Document Key Information Extraction
PrIeD-KIE: Towards Privacy Preserved Document Key Information Extraction
S. Saifullah
S. Agne
Andreas Dengel
Sheraz Ahmed
172
1
0
05 Oct 2023
Personalized Privacy Amplification via Importance Sampling
Personalized Privacy Amplification via Importance Sampling
Dominik Fay
Sebastian Mair
Jens Sjölund
354
0
0
05 Jul 2023
Gradients Look Alike: Sensitivity is Often Overestimated in DP-SGD
Gradients Look Alike: Sensitivity is Often Overestimated in DP-SGDUSENIX Security Symposium (USENIX Security), 2023
Anvith Thudi
Hengrui Jia
Casey Meehan
Ilia Shumailov
Nicolas Papernot
441
11
0
01 Jul 2023
Personalized DP-SGD using Sampling Mechanisms
Personalized DP-SGD using Sampling Mechanisms
Geon Heo
Junseok Seo
Steven Euijong Whang
193
3
0
24 May 2023
Fully Adaptive Composition for Gaussian Differential Privacy
Fully Adaptive Composition for Gaussian Differential Privacy
Adam D. Smith
Abhradeep Thakurta
255
6
0
31 Oct 2022
Individual Privacy Accounting for Differentially Private Stochastic
  Gradient Descent
Individual Privacy Accounting for Differentially Private Stochastic Gradient Descent
Da Yu
Gautam Kamath
Janardhan Kulkarni
Tie-Yan Liu
Jian Yin
Huishuai Zhang
528
24
0
06 Jun 2022
Fully Adaptive Composition in Differential Privacy
Fully Adaptive Composition in Differential PrivacyInternational Conference on Machine Learning (ICML), 2022
Justin Whitehouse
Aaditya Ramdas
Ryan M. Rogers
Zhiwei Steven Wu
341
46
0
10 Mar 2022
1