Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2210.00038
Cited By
Differentially Private Optimization on Large Model at Small Cost
30 September 2022
Zhiqi Bu
Yu-Xiang Wang
Sheng Zha
George Karypis
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Differentially Private Optimization on Large Model at Small Cost"
46 / 46 papers shown
Title
Can Differentially Private Fine-tuning LLMs Protect Against Privacy Attacks?
Hao Du
Shang Liu
Yang Cao
AAML
45
0
0
28 Apr 2025
AdvSGM: Differentially Private Graph Learning via Adversarial Skip-gram Model
Sen Zhang
Qingqing Ye
Haibo Hu
Jianliang Xu
42
0
0
27 Mar 2025
Generating Synthetic Data with Formal Privacy Guarantees: State of the Art and the Road Ahead
Viktor Schlegel
Anil A Bharath
Zilong Zhao
Kevin Yee
66
0
0
26 Mar 2025
Empirical Privacy Variance
Yuzheng Hu
Fan Wu
Ruicheng Xian
Yuhang Liu
Lydia Zakynthinou
Pritish Kamath
Chiyuan Zhang
David A. Forsyth
62
0
0
16 Mar 2025
Climate And Resource Awareness is Imperative to Achieving Sustainable AI (and Preventing a Global AI Arms Race)
Pedram Bakhtiarifard
Pınar Tözün
Christian Igel
Raghavendra Selvan
37
0
0
27 Feb 2025
Tokens for Learning, Tokens for Unlearning: Mitigating Membership Inference Attacks in Large Language Models via Dual-Purpose Training
Toan Tran
Ruixuan Liu
Li Xiong
MU
41
0
0
27 Feb 2025
DP-MemArc: Differential Privacy Transfer Learning for Memory Efficient Language Models
Yanming Liu
Xinyue Peng
Yuwei Zhang
Xiaolan Ke
Songhang Deng
...
Sheng Cheng
Xun Wang
Jianwei Yin
Tianyu Du
Xuhong Zhang
70
0
0
21 Feb 2025
Structure-Preference Enabled Graph Embedding Generation under Differential Privacy
Sen Zhang
Qingqing Ye
Haibo Hu
34
0
0
08 Jan 2025
Privacy in Fine-tuning Large Language Models: Attacks, Defenses, and Future Directions
Hao Du
Shang Liu
Lele Zheng
Yang Cao
Atsuyoshi Nakamura
Lei Chen
AAML
109
3
0
21 Dec 2024
DiSK: Differentially Private Optimizer with Simplified Kalman Filter for Noise Reduction
Xinwei Zhang
Zhiqi Bu
Borja Balle
Mingyi Hong
Meisam Razaviyayn
Vahab Mirrokni
74
2
0
04 Oct 2024
LLM-PBE: Assessing Data Privacy in Large Language Models
Qinbin Li
Junyuan Hong
Chulin Xie
Jeffrey Tan
Rachel Xin
...
Dan Hendrycks
Zhangyang Wang
Bo Li
Bingsheng He
Dawn Song
ELM
PILM
36
12
0
23 Aug 2024
Differentially Private Block-wise Gradient Shuffle for Deep Learning
Zilong Zhang
FedML
19
0
0
31 Jul 2024
Weights Shuffling for Improving DPSGD in Transformer-based Models
Jungang Yang
Zhe Ji
Liyao Xiang
22
0
0
22 Jul 2024
Towards Efficient and Scalable Training of Differentially Private Deep Learning
Sebastian Rodriguez Beltran
Marlon Tobaben
Niki Loppi
Antti Honkela
16
0
0
25 Jun 2024
Data Shapley in One Training Run
Jiachen T. Wang
Prateek Mittal
Dawn Song
Ruoxi Jia
TDI
27
7
0
16 Jun 2024
Efficient Differentially Private Fine-Tuning of Diffusion Models
Jing Liu
Andrew Lowy
T. Koike-Akino
K. Parsons
Ye Wang
21
0
0
07 Jun 2024
PrE-Text: Training Language Models on Private Federated Data in the Age of LLMs
Charlie Hou
Akshat Shrivastava
Hongyuan Zhan
Rylan Conway
Trang Le
Adithya Sagar
Giulia Fanti
Daniel Lazar
24
8
0
05 Jun 2024
LMO-DP: Optimizing the Randomization Mechanism for Differentially Private Fine-Tuning (Large) Language Models
Qin Yang
Meisam Mohammady
Han Wang
Ali Payani
Ashish Kundu
Kai Shu
Yan Yan
Yuan Hong
20
0
0
29 May 2024
Delving into Differentially Private Transformer
Youlong Ding
Xueyang Wu
Yining Meng
Yonggang Luo
Hao Wang
Weike Pan
16
5
0
28 May 2024
A Survey of Privacy-Preserving Model Explanations: Privacy Risks, Attacks, and Countermeasures
Thanh Tam Nguyen
T. T. Huynh
Zhao Ren
Thanh Toan Nguyen
Phi Le Nguyen
Hongzhi Yin
Quoc Viet Hung Nguyen
53
8
0
31 Mar 2024
Differentially Private Representation Learning via Image Captioning
Tom Sander
Yaodong Yu
Maziar Sanjabi
Alain Durmus
Yi-An Ma
Kamalika Chaudhuri
Chuan Guo
48
3
0
04 Mar 2024
On the Convergence of Differentially-Private Fine-tuning: To Linearly Probe or to Fully Fine-tune?
Shuqi Ke
Charlie Hou
Giulia Fanti
Sewoong Oh
34
4
0
29 Feb 2024
Pre-training Differentially Private Models with Limited Public Data
Zhiqi Bu
Xinwei Zhang
Mingyi Hong
Sheng Zha
George Karypis
77
3
0
28 Feb 2024
Privacy-Preserving Instructions for Aligning Large Language Models
Da Yu
Peter Kairouz
Sewoong Oh
Zheng Xu
32
17
0
21 Feb 2024
Purifying Large Language Models by Ensembling a Small Language Model
Tianlin Li
Qian Liu
Tianyu Pang
Chao Du
Qing-Wu Guo
Yang Liu
Min-Bin Lin
38
16
0
19 Feb 2024
Dataset Condensation Driven Machine Unlearning
Junaid Iqbal Khan
DD
31
1
0
31 Jan 2024
Private Fine-tuning of Large Language Models with Zeroth-order Optimization
Xinyu Tang
Ashwinee Panda
Milad Nasr
Saeed Mahloujifar
Prateek Mittal
44
18
0
09 Jan 2024
On the Benefits of Public Representations for Private Transfer Learning under Distribution Shift
Pratiksha Thaker
Amrith Rajagopal Setlur
Zhiwei Steven Wu
Virginia Smith
20
2
0
24 Dec 2023
Zero redundancy distributed learning with differential privacy
Zhiqi Bu
Justin Chiu
Ruixuan Liu
Sheng Zha
George Karypis
38
9
0
20 Nov 2023
On the accuracy and efficiency of group-wise clipping in differentially private optimization
Zhiqi Bu
Ruixuan Liu
Yu-Xiang Wang
Sheng Zha
George Karypis
VLM
17
4
0
30 Oct 2023
DPZero: Private Fine-Tuning of Language Models without Backpropagation
Liang Zhang
Bingcong Li
K. K. Thekumparampil
Sewoong Oh
Niao He
28
11
0
14 Oct 2023
Tangent Transformers for Composition, Privacy and Removal
Tian Yu Liu
Aditya Golatkar
Stefano Soatto
21
8
0
16 Jul 2023
Differentially Private Image Classification by Learning Priors from Random Processes
Xinyu Tang
Ashwinee Panda
Vikash Sehwag
Prateek Mittal
10
20
0
08 Jun 2023
DPFormer: Learning Differentially Private Transformer on Long-Tailed Data
Youlong Ding
Xueyang Wu
Hongya Wang
Weike Pan
13
0
0
28 May 2023
DP-SGD Without Clipping: The Lipschitz Neural Network Way
Louis Bethune
Thomas Massena
Thibaut Boissin
Yannick Prudent
Corentin Friedrich
Franck Mamalet
A. Bellet
M. Serrurier
David Vigouroux
27
9
0
25 May 2023
Privacy-Preserving In-Context Learning for Large Language Models
Tong Wu
Ashwinee Panda
Jiachen T. Wang
Prateek Mittal
46
29
0
02 May 2023
Why Is Public Pretraining Necessary for Private Model Training?
Arun Ganesh
Mahdi Haghifam
Milad Nasr
Sewoong Oh
Thomas Steinke
Om Thakkar
Abhradeep Thakurta
Lun Wang
11
36
0
19 Feb 2023
Differentially Private Natural Language Models: Recent Advances and Future Directions
Lijie Hu
Ivan Habernal
Lei Shen
Di Wang
AAML
13
18
0
22 Jan 2023
Differentially Private Image Classification from Features
Harsh Mehta
Walid Krichene
Abhradeep Thakurta
Alexey Kurakin
Ashok Cutkosky
24
7
0
24 Nov 2022
Differentially Private Bias-Term Fine-tuning of Foundation Models
Zhiqi Bu
Yu-Xiang Wang
Sheng Zha
George Karypis
10
46
0
30 Sep 2022
Scalable and Efficient Training of Large Convolutional Neural Networks with Differential Privacy
Zhiqi Bu
J. Mao
Shiyun Xu
131
47
0
21 May 2022
Differentially Private Fine-tuning of Language Models
Da Yu
Saurabh Naik
A. Backurs
Sivakanth Gopi
Huseyin A. Inan
...
Y. Lee
Andre Manoel
Lukas Wutschitz
Sergey Yekhanin
Huishuai Zhang
134
344
0
13 Oct 2021
Opacus: User-Friendly Differential Privacy Library in PyTorch
Ashkan Yousefpour
I. Shilov
Alexandre Sablayrolles
Davide Testuggine
Karthik Prasad
...
Sayan Gosh
Akash Bharadwaj
Jessica Zhao
Graham Cormode
Ilya Mironov
VLM
144
347
0
25 Sep 2021
Extracting Training Data from Large Language Models
Nicholas Carlini
Florian Tramèr
Eric Wallace
Matthew Jagielski
Ariel Herbert-Voss
...
Tom B. Brown
D. Song
Ulfar Erlingsson
Alina Oprea
Colin Raffel
MLAU
SILM
267
1,808
0
14 Dec 2020
GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding
Alex Jinpeng Wang
Amanpreet Singh
Julian Michael
Felix Hill
Omer Levy
Samuel R. Bowman
ELM
294
6,943
0
20 Apr 2018
Efficient Per-Example Gradient Computations
Ian Goodfellow
160
73
0
07 Oct 2015
1