ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.00611
  4. Cited By
SAGDA: Achieving $\mathcal{O}(ε^{-2})$ Communication Complexity
  in Federated Min-Max Learning

SAGDA: Achieving O(ε−2)\mathcal{O}(ε^{-2})O(ε−2) Communication Complexity in Federated Min-Max Learning

2 October 2022
Haibo Yang
Zhuqing Liu
Xin Zhang
Jia-Wei Liu
    FedML
ArXivPDFHTML

Papers citing "SAGDA: Achieving $\mathcal{O}(ε^{-2})$ Communication Complexity in Federated Min-Max Learning"

1 / 1 papers shown
Title
Linear Convergence of Gradient and Proximal-Gradient Methods Under the
  Polyak-Łojasiewicz Condition
Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition
Hamed Karimi
J. Nutini
Mark W. Schmidt
133
1,198
0
16 Aug 2016
1