Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2210.01506
Cited By
How deep convolutional neural networks lose spatial information with training
4 October 2022
Umberto M. Tomasini
Leonardo Petrini
Francesco Cagnetta
M. Wyart
Re-assign community
ArXiv
PDF
HTML
Papers citing
"How deep convolutional neural networks lose spatial information with training"
4 / 4 papers shown
Title
An Empirical Study on Fault Detection and Root Cause Analysis of Indium Tin Oxide Electrodes by Processing S-parameter Patterns
Tae Yeob Kang
Haebom Lee
S. Suh
16
0
0
16 Aug 2023
A Practical Method for Constructing Equivariant Multilayer Perceptrons for Arbitrary Matrix Groups
Marc Finzi
Max Welling
A. Wilson
71
185
0
19 Apr 2021
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials
Simon L. Batzner
Albert Musaelian
Lixin Sun
Mario Geiger
J. Mailoa
M. Kornbluth
N. Molinari
Tess E. Smidt
Boris Kozinsky
188
1,218
0
08 Jan 2021
Dynamical Isometry and a Mean Field Theory of CNNs: How to Train 10,000-Layer Vanilla Convolutional Neural Networks
Lechao Xiao
Yasaman Bahri
Jascha Narain Sohl-Dickstein
S. Schoenholz
Jeffrey Pennington
220
347
0
14 Jun 2018
1