ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.01506
  4. Cited By
How deep convolutional neural networks lose spatial information with
  training

How deep convolutional neural networks lose spatial information with training

4 October 2022
Umberto M. Tomasini
Leonardo Petrini
Francesco Cagnetta
M. Wyart
ArXivPDFHTML

Papers citing "How deep convolutional neural networks lose spatial information with training"

4 / 4 papers shown
Title
An Empirical Study on Fault Detection and Root Cause Analysis of Indium
  Tin Oxide Electrodes by Processing S-parameter Patterns
An Empirical Study on Fault Detection and Root Cause Analysis of Indium Tin Oxide Electrodes by Processing S-parameter Patterns
Tae Yeob Kang
Haebom Lee
S. Suh
16
0
0
16 Aug 2023
A Practical Method for Constructing Equivariant Multilayer Perceptrons
  for Arbitrary Matrix Groups
A Practical Method for Constructing Equivariant Multilayer Perceptrons for Arbitrary Matrix Groups
Marc Finzi
Max Welling
A. Wilson
71
185
0
19 Apr 2021
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate
  Interatomic Potentials
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials
Simon L. Batzner
Albert Musaelian
Lixin Sun
Mario Geiger
J. Mailoa
M. Kornbluth
N. Molinari
Tess E. Smidt
Boris Kozinsky
188
1,218
0
08 Jan 2021
Dynamical Isometry and a Mean Field Theory of CNNs: How to Train
  10,000-Layer Vanilla Convolutional Neural Networks
Dynamical Isometry and a Mean Field Theory of CNNs: How to Train 10,000-Layer Vanilla Convolutional Neural Networks
Lechao Xiao
Yasaman Bahri
Jascha Narain Sohl-Dickstein
S. Schoenholz
Jeffrey Pennington
220
347
0
14 Jun 2018
1