Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2210.01708
Cited By
Conquering the Communication Constraints to Enable Large Pre-Trained Models in Federated Learning
4 October 2022
Guangyu Sun
Umar Khalid
Matías Mendieta
Taojiannan Yang
C. L. P. Chen
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Conquering the Communication Constraints to Enable Large Pre-Trained Models in Federated Learning"
7 / 7 papers shown
Title
AdaptFormer: Adapting Vision Transformers for Scalable Visual Recognition
Shoufa Chen
Chongjian Ge
Zhan Tong
Jiangliu Wang
Yibing Song
Jue Wang
Ping Luo
111
373
0
26 May 2022
P-Tuning v2: Prompt Tuning Can Be Comparable to Fine-tuning Universally Across Scales and Tasks
Xiao Liu
Kaixuan Ji
Yicheng Fu
Weng Lam Tam
Zhengxiao Du
Zhilin Yang
Jie Tang
VLM
203
604
0
14 Oct 2021
CPT: Colorful Prompt Tuning for Pre-trained Vision-Language Models
Yuan Yao
Ao Zhang
Zhengyan Zhang
Zhiyuan Liu
Tat-Seng Chua
Maosong Sun
MLLM
VPVLM
VLM
150
178
0
24 Sep 2021
Emerging Properties in Self-Supervised Vision Transformers
Mathilde Caron
Hugo Touvron
Ishan Misra
Hervé Jégou
Julien Mairal
Piotr Bojanowski
Armand Joulin
255
4,299
0
29 Apr 2021
ImageNet-21K Pretraining for the Masses
T. Ridnik
Emanuel Ben-Baruch
Asaf Noy
Lihi Zelnik-Manor
SSeg
VLM
CLIP
138
542
0
22 Apr 2021
Is Space-Time Attention All You Need for Video Understanding?
Gedas Bertasius
Heng Wang
Lorenzo Torresani
ViT
253
1,486
0
09 Feb 2021
ImageNet Large Scale Visual Recognition Challenge
Olga Russakovsky
Jia Deng
Hao Su
J. Krause
S. Satheesh
...
A. Karpathy
A. Khosla
Michael S. Bernstein
Alexander C. Berg
Li Fei-Fei
VLM
ObjD
249
9,997
0
01 Sep 2014
1