ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.02202
  4. Cited By
A new family of Constitutive Artificial Neural Networks towards
  automated model discovery

A new family of Constitutive Artificial Neural Networks towards automated model discovery

15 September 2022
K. Linka
E. Kuhl
    AI4CE
ArXivPDFHTML

Papers citing "A new family of Constitutive Artificial Neural Networks towards automated model discovery"

24 / 24 papers shown
Title
Atrial constitutive neural networks
Atrial constitutive neural networks
Mathias Peirlinck
K. Linka
Ellen Kuhl
29
0
0
03 Apr 2025
Physics-based machine learning for fatigue lifetime prediction under non-uniform loading scenarios
Abedulgader Baktheer
Fadi Aldakheel
AI4CE
46
1
0
07 Mar 2025
Input convex neural networks: universal approximation theorem and implementation for isotropic polyconvex hyperelastic energies
Input convex neural networks: universal approximation theorem and implementation for isotropic polyconvex hyperelastic energies
Gian-Luca Geuken
P. Kurzeja
David Wiedemann
J. Mosler
43
1
0
12 Feb 2025
Automated Model Discovery for Tensional Homeostasis: Constitutive
  Machine Learning in Growth and Remodeling
Automated Model Discovery for Tensional Homeostasis: Constitutive Machine Learning in Growth and Remodeling
H. Holthusen
T. Brepols
K. Linka
Ellen Kuhl
21
4
0
17 Oct 2024
Accounting for plasticity: An extension of inelastic Constitutive
  Artificial Neural Networks
Accounting for plasticity: An extension of inelastic Constitutive Artificial Neural Networks
Birte Boes
Jaan-Willem Simon
H. Holthusen
AI4CE
30
6
0
27 Jul 2024
Bayesian neural networks for predicting uncertainty in full-field
  material response
Bayesian neural networks for predicting uncertainty in full-field material response
G. Pasparakis
Lori Graham-Brady
Michael D. Shields
AI4CE
29
4
0
21 Jun 2024
A thermodynamically consistent physics-informed deep learning material
  model for short fiber/polymer nanocomposites
A thermodynamically consistent physics-informed deep learning material model for short fiber/polymer nanocomposites
Betim Bahtiri
B. Arash
Sven Scheffler
Maximilian Jux
R. Rolfes
AI4CE
19
5
0
27 Mar 2024
Hybrid data-driven and physics-informed regularized learning of cyclic
  plasticity with Neural Networks
Hybrid data-driven and physics-informed regularized learning of cyclic plasticity with Neural Networks
Stefan Hildebrand
Sandra Klinge
26
0
0
04 Mar 2024
Peridynamic Neural Operators: A Data-Driven Nonlocal Constitutive Model
  for Complex Material Responses
Peridynamic Neural Operators: A Data-Driven Nonlocal Constitutive Model for Complex Material Responses
S. Jafarzadeh
Stewart Silling
Ning Liu
Zhongqiang Zhang
Yue Yu
AI4CE
19
15
0
11 Jan 2024
Theory and implementation of inelastic Constitutive Artificial Neural
  Networks
Theory and implementation of inelastic Constitutive Artificial Neural Networks
H. Holthusen
L. Lamm
T. Brepols
Stefanie Reese
Ellen Kuhl
AI4CE
28
29
0
10 Nov 2023
Exploring hyperelastic material model discovery for human brain cortex:
  multivariate analysis vs. artificial neural network approaches
Exploring hyperelastic material model discovery for human brain cortex: multivariate analysis vs. artificial neural network approaches
Jixin Hou
Nicholas Filla
Xianyan Chen
M. Razavi
Tianming Liu
Xianqiao Wang
19
2
0
16 Oct 2023
On sparse regression, Lp-regularization, and automated model discovery
On sparse regression, Lp-regularization, and automated model discovery
Jeremy A. McCulloch
Skyler R. St. Pierre
K. Linka
E. Kuhl
22
28
0
09 Oct 2023
Extreme sparsification of physics-augmented neural networks for
  interpretable model discovery in mechanics
Extreme sparsification of physics-augmented neural networks for interpretable model discovery in mechanics
J. Fuhg
Reese E. Jones
N. Bouklas
AI4CE
12
22
0
05 Oct 2023
Deep Learning in Deterministic Computational Mechanics
Deep Learning in Deterministic Computational Mechanics
L. Herrmann
Stefan Kollmannsberger
AI4CE
PINN
35
0
0
27 Sep 2023
Generative Hyperelasticity with Physics-Informed Probabilistic Diffusion
  Fields
Generative Hyperelasticity with Physics-Informed Probabilistic Diffusion Fields
Vahidullah Tac
Manuel K Rausch
Ilias Bilionis
F. Sahli Costabal
A. B. Tepole
DiffM
AI4CE
19
3
0
11 Sep 2023
Stress representations for tensor basis neural networks: alternative
  formulations to Finger-Rivlin-Ericksen
Stress representations for tensor basis neural networks: alternative formulations to Finger-Rivlin-Ericksen
J. Fuhg
N. Bouklas
Reese E. Jones
11
10
0
21 Aug 2023
Predicting and explaining nonlinear material response using deep
  Physically Guided Neural Networks with Internal Variables
Predicting and explaining nonlinear material response using deep Physically Guided Neural Networks with Internal Variables
Javier Orera-Echeverria
J. Ayensa-Jiménez
Manuel Doblaré
18
1
0
07 Aug 2023
Discovering interpretable elastoplasticity models via the neural
  polynomial method enabled symbolic regressions
Discovering interpretable elastoplasticity models via the neural polynomial method enabled symbolic regressions
B. Bahmani
H. S. Suh
WaiChing Sun
8
17
0
24 Jul 2023
Discovering a reaction-diffusion model for Alzheimer's disease by
  combining PINNs with symbolic regression
Discovering a reaction-diffusion model for Alzheimer's disease by combining PINNs with symbolic regression
Zhen Zhang
Zongren Zou
E. Kuhl
George Karniadakis
15
41
0
16 Jul 2023
A Generative Modeling Framework for Inferring Families of Biomechanical
  Constitutive Laws in Data-Sparse Regimes
A Generative Modeling Framework for Inferring Families of Biomechanical Constitutive Laws in Data-Sparse Regimes
Minglang Yin
Zongren Zou
Enrui Zhang
C. Cavinato
J. Humphrey
George Karniadakis
SyDa
MedIm
AI4CE
45
11
0
04 May 2023
Latent Dynamics Networks (LDNets): learning the intrinsic dynamics of
  spatio-temporal processes
Latent Dynamics Networks (LDNets): learning the intrinsic dynamics of spatio-temporal processes
Francesco Regazzoni
S. Pagani
M. Salvador
Luca Dede'
A. Quarteroni
AI4CE
31
7
0
28 Apr 2023
Viscoelastic Constitutive Artificial Neural Networks (vCANNs) $-$ a
  framework for data-driven anisotropic nonlinear finite viscoelasticity
Viscoelastic Constitutive Artificial Neural Networks (vCANNs) −-− a framework for data-driven anisotropic nonlinear finite viscoelasticity
Kian P. Abdolazizi
K. Linka
C. Cyron
8
32
0
21 Mar 2023
Data-driven anisotropic finite viscoelasticity using neural ordinary
  differential equations
Data-driven anisotropic finite viscoelasticity using neural ordinary differential equations
Vahidullah Tac
Manuel K Rausch
F. Sahli Costabal
A. B. Tepole
18
33
0
11 Jan 2023
Data-driven Tissue Mechanics with Polyconvex Neural Ordinary
  Differential Equations
Data-driven Tissue Mechanics with Polyconvex Neural Ordinary Differential Equations
Vahidullah Tac
F. Sahli Costabal
A. B. Tepole
AI4CE
25
69
0
03 Oct 2021
1