Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2210.02910
Cited By
Federated Boosted Decision Trees with Differential Privacy
6 October 2022
Samuel Maddock
Graham Cormode
Tianhao Wang
Carsten Maple
S. Jha
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Federated Boosted Decision Trees with Differential Privacy"
11 / 11 papers shown
Title
Bilateral Differentially Private Vertical Federated Boosted Decision Trees
Bokang Zhang
Zhikun Zhang
Haodong Jiang
Yong-Jin Liu
Lihao Zheng
Yuxiao Zhou
Shuaiting Huang
Junfeng Wu
FedML
77
0
0
30 Apr 2025
Privacy-preserving federated prediction of pain intensity change based on multi-center survey data
Supratim Das
Mahdie Rafie
Paula Kammer
S. Skou
D. T. Grønne
...
Hans-Helmut Konig
Md Shihab Ullaha
Niklas Probul
Jan Baumbacha
L. Baumbach
OOD
FedML
38
0
0
12 Sep 2024
Cross-silo Federated Learning with Record-level Personalized Differential Privacy
Junxu Liu
Jian Lou
Li Xiong
Jinfei Liu
Xiaofeng Meng
31
5
0
29 Jan 2024
FP-Fed: Privacy-Preserving Federated Detection of Browser Fingerprinting
Meenatchi Sundaram Muthu Selva Annamalai
Igor Bilogrevic
Emiliano De Cristofaro
34
1
0
28 Nov 2023
Effective and Efficient Federated Tree Learning on Hybrid Data
Qinbin Li
Chulin Xie
Xiaojun Xu
Xiaoyuan Liu
Ce Zhang
Bo-wen Li
Bingsheng He
D. Song
FedML
21
3
0
18 Oct 2023
A Survey for Federated Learning Evaluations: Goals and Measures
Di Chai
Leye Wang
Liu Yang
Junxue Zhang
Kai Chen
Qian Yang
ELM
FedML
17
21
0
23 Aug 2023
DPM: Clustering Sensitive Data through Separation
Yara Schutt
Johannes Liebenow
Tanya Braun
Marcel Gehrke
Florian Thaeter
Esfandiar Mohammadi
17
0
0
06 Jul 2023
Privet: A Privacy-Preserving Vertical Federated Learning Service for Gradient Boosted Decision Tables
Yifeng Zheng
Shuangqing Xu
Songlei Wang
Yan Gao
Zhongyun Hua
FedML
18
10
0
22 May 2023
Deep incremental learning models for financial temporal tabular datasets with distribution shifts
Thomas Wong
Mauricio Barahona
OOD
AIFin
AI4TS
18
0
0
14 Mar 2023
Private Boosted Decision Trees via Smooth Re-Weighting
Vahid R. Asadi
M. Carmosino
Mohammad Jahanara
Akbar Rafiey
Bahar Salamatian
22
2
0
29 Jan 2022
Practical and Private (Deep) Learning without Sampling or Shuffling
Peter Kairouz
Brendan McMahan
Shuang Song
Om Thakkar
Abhradeep Thakurta
Zheng Xu
FedML
182
194
0
26 Feb 2021
1