ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.03919
  4. Cited By
CLIP-PAE: Projection-Augmentation Embedding to Extract Relevant Features
  for a Disentangled, Interpretable, and Controllable Text-Guided Face
  Manipulation

CLIP-PAE: Projection-Augmentation Embedding to Extract Relevant Features for a Disentangled, Interpretable, and Controllable Text-Guided Face Manipulation

8 October 2022
Chenliang Zhou
Fangcheng Zhong
Cengiz Öztireli
    CLIP
ArXivPDFHTML

Papers citing "CLIP-PAE: Projection-Augmentation Embedding to Extract Relevant Features for a Disentangled, Interpretable, and Controllable Text-Guided Face Manipulation"

4 / 4 papers shown
Title
IntentTuner: An Interactive Framework for Integrating Human Intents in
  Fine-tuning Text-to-Image Generative Models
IntentTuner: An Interactive Framework for Integrating Human Intents in Fine-tuning Text-to-Image Generative Models
Xingchen Zeng
Ziyao Gao
Yilin Ye
Wei Zeng
12
12
0
28 Jan 2024
Generalized People Diversity: Learning a Human Perception-Aligned
  Diversity Representation for People Images
Generalized People Diversity: Learning a Human Perception-Aligned Diversity Representation for People Images
Hansa Srinivasan
Candice Schumann
Aradhana Sinha
David Madras
Gbolahan O. Olanubi
Alex Beutel
Susanna Ricco
Jilin Chen
10
5
0
25 Jan 2024
A Style-Based Generator Architecture for Generative Adversarial Networks
A Style-Based Generator Architecture for Generative Adversarial Networks
Tero Karras
S. Laine
Timo Aila
262
10,183
0
12 Dec 2018
Inverting The Generator Of A Generative Adversarial Network
Inverting The Generator Of A Generative Adversarial Network
Antonia Creswell
Anil Anthony Bharath
GAN
149
337
0
17 Nov 2016
1