Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2210.04225
Cited By
Hyperactive Learning (HAL) for Data-Driven Interatomic Potentials
9 October 2022
Cas van der Oord
Matthias Sachs
D. P. Kovács
Christoph Ortner
Gábor Csányi
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Hyperactive Learning (HAL) for Data-Driven Interatomic Potentials"
6 / 6 papers shown
Title
A practical guide to machine learning interatomic potentials -- Status and future
Ryan Jacobs
D. Morgan
Siamak Attarian
Jun Meng
Chen Shen
...
K. J. Schmidt
So Takamoto
Aidan Thompson
Julia Westermayr
Brandon M. Wood
55
4
0
12 Mar 2025
Evaluation of uncertainty estimations for Gaussian process regression based machine learning interatomic potentials
Matthias Holzenkamp
Dongyu Lyu
Ulrich Kleinekathöfer
Peter Zaspel
33
0
0
10 Jan 2025
Physics-Informed Weakly Supervised Learning for Interatomic Potentials
Makoto Takamoto
Viktor Zaverkin
Mathias Niepert
AI4CE
55
0
0
23 Jul 2024
Consensus-based construction of high-dimensional free energy surface
Liyao Lyu
Huan Lei
9
0
0
08 Nov 2023
Nested sampling for physical scientists
G. Ashton
N. Bernstein
Johannes Buchner
Xi Chen
Gábor Csányi
...
Leah F. South
J. Veitch
Philipp Wacker
D. Wales
David Yallup
31
76
0
31 May 2022
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials
Simon L. Batzner
Albert Musaelian
Lixin Sun
Mario Geiger
J. Mailoa
M. Kornbluth
N. Molinari
Tess E. Smidt
Boris Kozinsky
188
1,229
0
08 Jan 2021
1