Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2210.04371
Cited By
A Detailed Study of Interpretability of Deep Neural Network based Top Taggers
9 October 2022
Ayush Khot
Mark S. Neubauer
Avik Roy
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A Detailed Study of Interpretability of Deep Neural Network based Top Taggers"
9 / 9 papers shown
Title
Interpretable Machine Learning in Physics: A Review
Sebastian Johann Wetzel
Seungwoong Ha
Raban Iten
Miriam Klopotek
Ziming Liu
AI4CE
75
0
0
30 Mar 2025
FAIR AI Models in High Energy Physics
Javier Mauricio Duarte
Haoyang Li
Avik Roy
Ruike Zhu
Eliu A. Huerta
...
Mark S. Neubauer
Sang Eon Park
M. Quinnan
R. Rusack
Zhizhen Zhao
20
8
0
09 Dec 2022
Feature Selection with Distance Correlation
Ranit Das
Gregor Kasieczka
David Shih
11
14
0
30 Nov 2022
Interpretability of an Interaction Network for identifying
H
→
b
b
ˉ
H \rightarrow b\bar{b}
H
→
b
b
ˉ
jets
Avik Roy
Mark S. Neubauer
12
3
0
23 Nov 2022
PELICAN: Permutation Equivariant and Lorentz Invariant or Covariant Aggregator Network for Particle Physics
A. Bogatskiy
Timothy Hoffman
David W. Miller
Jan T. Offermann
16
30
0
01 Nov 2022
FAIR for AI: An interdisciplinary and international community building perspective
Eliu A. Huerta
B. Blaiszik
L. C. Brinson
Kristofer E Bouchard
Daniel Madrigal Diaz
...
F. Psomopoulos
Avik Roy
Oliver Rübel
Zhizhen Zhao
Ruike Zhu
20
41
0
30 Sep 2022
How can I choose an explainer? An Application-grounded Evaluation of Post-hoc Explanations
Sérgio Jesus
Catarina Belém
Vladimir Balayan
João Bento
Pedro Saleiro
P. Bizarro
João Gama
121
119
0
21 Jan 2021
Explainability in Graph Neural Networks: A Taxonomic Survey
Hao Yuan
Haiyang Yu
Shurui Gui
Shuiwang Ji
162
589
0
31 Dec 2020
Fast inference of deep neural networks in FPGAs for particle physics
Javier Mauricio Duarte
Song Han
Philip C. Harris
S. Jindariani
E. Kreinar
...
J. Ngadiuba
M. Pierini
R. Rivera
N. Tran
Zhenbin Wu
AI4CE
75
385
0
16 Apr 2018
1