ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.04435
17
43

Creating a Dynamic Quadrupedal Robotic Goalkeeper with Reinforcement Learning

10 October 2022
Xiaoyu Huang
Zhongyu Li
Yan-Ling Xiang
Yiming Ni
Yufeng Chi
Yunhao Li
Lizhi Yang
Xue Bin Peng
K. Sreenath
ArXivPDFHTML
Abstract

We present a reinforcement learning (RL) framework that enables quadrupedal robots to perform soccer goalkeeping tasks in the real world. Soccer goalkeeping using quadrupeds is a challenging problem, that combines highly dynamic locomotion with precise and fast non-prehensile object (ball) manipulation. The robot needs to react to and intercept a potentially flying ball using dynamic locomotion maneuvers in a very short amount of time, usually less than one second. In this paper, we propose to address this problem using a hierarchical model-free RL framework. The first component of the framework contains multiple control policies for distinct locomotion skills, which can be used to cover different regions of the goal. Each control policy enables the robot to track random parametric end-effector trajectories while performing one specific locomotion skill, such as jump, dive, and sidestep. These skills are then utilized by the second part of the framework which is a high-level planner to determine a desired skill and end-effector trajectory in order to intercept a ball flying to different regions of the goal. We deploy the proposed framework on a Mini Cheetah quadrupedal robot and demonstrate the effectiveness of our framework for various agile interceptions of a fast-moving ball in the real world.

View on arXiv
Comments on this paper