ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.04562
  4. Cited By
Using Detection, Tracking and Prediction in Visual SLAM to Achieve
  Real-time Semantic Mapping of Dynamic Scenarios

Using Detection, Tracking and Prediction in Visual SLAM to Achieve Real-time Semantic Mapping of Dynamic Scenarios

10 October 2022
Xingyu Chen
Jianru Xue
Jianwu Fang
Yuxin Pan
Nanning Zheng
ArXivPDFHTML

Papers citing "Using Detection, Tracking and Prediction in Visual SLAM to Achieve Real-time Semantic Mapping of Dynamic Scenarios"

3 / 3 papers shown
Title
DynaSLAM: Tracking, Mapping and Inpainting in Dynamic Scenes
DynaSLAM: Tracking, Mapping and Inpainting in Dynamic Scenes
Berta Bescós
José M. Fácil
Javier Civera
José Neira
56
836
0
14 Jun 2018
ORB-SLAM2: an Open-Source SLAM System for Monocular, Stereo and RGB-D
  Cameras
ORB-SLAM2: an Open-Source SLAM System for Monocular, Stereo and RGB-D Cameras
Raul Mur-Artal
Juan D. Tardós
191
4,837
0
20 Oct 2016
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image
  Segmentation
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation
Vijay Badrinarayanan
Alex Kendall
R. Cipolla
SSeg
420
15,438
0
02 Nov 2015
1