ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.04757
  4. Cited By
On the Performance of Gradient Tracking with Local Updates

On the Performance of Gradient Tracking with Local Updates

10 October 2022
Edward Duc Hien Nguyen
Sulaiman A. Alghunaim
Kun Yuan
César A. Uribe
ArXivPDFHTML

Papers citing "On the Performance of Gradient Tracking with Local Updates"

12 / 12 papers shown
Title
Decentralized Nonconvex Composite Federated Learning with Gradient Tracking and Momentum
Decentralized Nonconvex Composite Federated Learning with Gradient Tracking and Momentum
Yuan Zhou
Xinli Shi
Xuelong Li
Jiachen Zhong
G. Wen
Jinde Cao
FedML
39
0
0
17 Apr 2025
Fast Decentralized Gradient Tracking for Federated Minimax Optimization
  with Local Updates
Fast Decentralized Gradient Tracking for Federated Minimax Optimization with Local Updates
Chris Junchi Li
22
0
0
07 May 2024
Robust Decentralized Learning with Local Updates and Gradient Tracking
Robust Decentralized Learning with Local Updates and Gradient Tracking
Sajjad Ghiasvand
Amirhossein Reisizadeh
Mahnoosh Alizadeh
Ramtin Pedarsani
28
3
0
02 May 2024
The Effectiveness of Local Updates for Decentralized Learning under Data
  Heterogeneity
The Effectiveness of Local Updates for Decentralized Learning under Data Heterogeneity
Tongle Wu
Ying Sun
28
0
0
23 Mar 2024
Communication-Efficient Federated Optimization over Semi-Decentralized Networks
Communication-Efficient Federated Optimization over Semi-Decentralized Networks
He Wang
Yuejie Chi
FedML
18
2
0
30 Nov 2023
Revisiting Decentralized ProxSkip: Achieving Linear Speedup
Revisiting Decentralized ProxSkip: Achieving Linear Speedup
Luyao Guo
Sulaiman A. Alghunaim
Kun Yuan
Laurent Condat
Jinde Cao
FedML
19
1
0
12 Oct 2023
Momentum Benefits Non-IID Federated Learning Simply and Provably
Momentum Benefits Non-IID Federated Learning Simply and Provably
Ziheng Cheng
Xinmeng Huang
Pengfei Wu
Kun Yuan
FedML
18
16
0
28 Jun 2023
On the Computation-Communication Trade-Off with A Flexible Gradient
  Tracking Approach
On the Computation-Communication Trade-Off with A Flexible Gradient Tracking Approach
Yan Huang
Jinming Xu
12
2
0
12 Jun 2023
Decentralized Gradient Tracking with Local Steps
Decentralized Gradient Tracking with Local Steps
Yue Liu
Tao R. Lin
Anastasia Koloskova
Sebastian U. Stich
9
36
0
03 Jan 2023
BlueFog: Make Decentralized Algorithms Practical for Optimization and
  Deep Learning
BlueFog: Make Decentralized Algorithms Practical for Optimization and Deep Learning
Bicheng Ying
Kun Yuan
Hanbin Hu
Yiming Chen
W. Yin
FedML
29
27
0
08 Nov 2021
Linear Convergence in Federated Learning: Tackling Client Heterogeneity
  and Sparse Gradients
Linear Convergence in Federated Learning: Tackling Client Heterogeneity and Sparse Gradients
A. Mitra
Rayana H. Jaafar
George J. Pappas
Hamed Hassani
FedML
55
157
0
14 Feb 2021
Distributed Pareto Optimization via Diffusion Strategies
Distributed Pareto Optimization via Diffusion Strategies
Jianshu Chen
A. H. Sayed
55
174
0
13 Aug 2012
1