ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.04783
  4. Cited By
On the Importance of Calibration in Semi-supervised Learning

On the Importance of Calibration in Semi-supervised Learning

10 October 2022
Charlotte Loh
Rumen Dangovski
Shivchander Sudalairaj
Seung-Jun Han
Ligong Han
Leonid Karlinsky
Marin Soljacic
Akash Srivastava
ArXivPDFHTML

Papers citing "On the Importance of Calibration in Semi-supervised Learning"

5 / 5 papers shown
Title
FlexMatch: Boosting Semi-Supervised Learning with Curriculum Pseudo
  Labeling
FlexMatch: Boosting Semi-Supervised Learning with Curriculum Pseudo Labeling
Bowen Zhang
Yidong Wang
Wenxin Hou
Hao Wu
Jindong Wang
Manabu Okumura
T. Shinozaki
AAML
223
862
0
15 Oct 2021
In Defense of Pseudo-Labeling: An Uncertainty-Aware Pseudo-label
  Selection Framework for Semi-Supervised Learning
In Defense of Pseudo-Labeling: An Uncertainty-Aware Pseudo-label Selection Framework for Semi-Supervised Learning
Mamshad Nayeem Rizve
Kevin Duarte
Y. S. Rawat
M. Shah
217
508
0
15 Jan 2021
Mean teachers are better role models: Weight-averaged consistency
  targets improve semi-supervised deep learning results
Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results
Antti Tarvainen
Harri Valpola
OOD
MoMe
261
1,275
0
06 Mar 2017
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
270
5,660
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
282
9,136
0
06 Jun 2015
1