Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2210.04783
Cited By
On the Importance of Calibration in Semi-supervised Learning
10 October 2022
Charlotte Loh
Rumen Dangovski
Shivchander Sudalairaj
Seung-Jun Han
Ligong Han
Leonid Karlinsky
Marin Soljacic
Akash Srivastava
Re-assign community
ArXiv
PDF
HTML
Papers citing
"On the Importance of Calibration in Semi-supervised Learning"
5 / 5 papers shown
Title
FlexMatch: Boosting Semi-Supervised Learning with Curriculum Pseudo Labeling
Bowen Zhang
Yidong Wang
Wenxin Hou
Hao Wu
Jindong Wang
Manabu Okumura
T. Shinozaki
AAML
223
862
0
15 Oct 2021
In Defense of Pseudo-Labeling: An Uncertainty-Aware Pseudo-label Selection Framework for Semi-Supervised Learning
Mamshad Nayeem Rizve
Kevin Duarte
Y. S. Rawat
M. Shah
217
508
0
15 Jan 2021
Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results
Antti Tarvainen
Harri Valpola
OOD
MoMe
261
1,275
0
06 Mar 2017
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
270
5,660
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
282
9,136
0
06 Jun 2015
1