Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2210.05021
Cited By
The good, the bad and the ugly sides of data augmentation: An implicit spectral regularization perspective
10 October 2022
Chi-Heng Lin
Chiraag Kaushik
Eva L. Dyer
Vidya Muthukumar
Re-assign community
ArXiv
PDF
HTML
Papers citing
"The good, the bad and the ugly sides of data augmentation: An implicit spectral regularization perspective"
7 / 7 papers shown
Title
LatentDR: Improving Model Generalization Through Sample-Aware Latent Degradation and Restoration
Ran Liu
Sahil Khose
Jingyun Xiao
Lakshmi Sathidevi
Keerthan Ramnath
Z. Kira
Eva L. Dyer
19
3
0
28 Aug 2023
Mitigating multiple descents: A model-agnostic framework for risk monotonization
Pratik V. Patil
Arun K. Kuchibhotla
Yuting Wei
Alessandro Rinaldo
24
8
0
25 May 2022
The Implicit Bias of Benign Overfitting
Ohad Shamir
91
35
0
27 Jan 2022
Masked Autoencoders Are Scalable Vision Learners
Kaiming He
Xinlei Chen
Saining Xie
Yanghao Li
Piotr Dollár
Ross B. Girshick
ViT
TPM
258
7,412
0
11 Nov 2021
Harmless interpolation in regression and classification with structured features
Andrew D. McRae
Santhosh Karnik
Mark A. Davenport
Vidya Muthukumar
93
11
0
09 Nov 2021
Learning with invariances in random features and kernel models
Song Mei
Theodor Misiakiewicz
Andrea Montanari
OOD
44
89
0
25 Feb 2021
Negative Data Augmentation
Abhishek Sinha
Kumar Ayush
Jiaming Song
Burak Uzkent
Hongxia Jin
Stefano Ermon
29
72
0
09 Feb 2021
1