ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.05118
  4. Cited By
Boosting Adversarial Robustness From The Perspective of Effective Margin
  Regularization

Boosting Adversarial Robustness From The Perspective of Effective Margin Regularization

11 October 2022
Ziquan Liu
Antoni B. Chan
    AAML
ArXivPDFHTML

Papers citing "Boosting Adversarial Robustness From The Perspective of Effective Margin Regularization"

7 / 7 papers shown
Title
TIMA: Text-Image Mutual Awareness for Balancing Zero-Shot Adversarial
  Robustness and Generalization Ability
TIMA: Text-Image Mutual Awareness for Balancing Zero-Shot Adversarial Robustness and Generalization Ability
Fengji Ma
Li Liu
Hei Victor Cheng
VLM
25
0
0
27 May 2024
The Pitfalls and Promise of Conformal Inference Under Adversarial
  Attacks
The Pitfalls and Promise of Conformal Inference Under Adversarial Attacks
Ziquan Liu
Yufei Cui
Yan Yan
Yi Tian Xu
Xiangyang Ji
Xue Liu
Antoni B. Chan
AAML
23
2
0
14 May 2024
ODAM: Gradient-based instance-specific visual explanations for object
  detection
ODAM: Gradient-based instance-specific visual explanations for object detection
Chenyang Zhao
Antoni B. Chan
FAtt
11
8
0
13 Apr 2023
TWINS: A Fine-Tuning Framework for Improved Transferability of
  Adversarial Robustness and Generalization
TWINS: A Fine-Tuning Framework for Improved Transferability of Adversarial Robustness and Generalization
Ziquan Liu
Yi Tian Xu
Xiangyang Ji
Antoni B. Chan
AAML
13
17
0
20 Mar 2023
Exploring Architectural Ingredients of Adversarially Robust Deep Neural
  Networks
Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks
Hanxun Huang
Yisen Wang
S. Erfani
Quanquan Gu
James Bailey
Xingjun Ma
AAML
TPM
44
100
0
07 Oct 2021
RobustBench: a standardized adversarial robustness benchmark
RobustBench: a standardized adversarial robustness benchmark
Francesco Croce
Maksym Andriushchenko
Vikash Sehwag
Edoardo Debenedetti
Nicolas Flammarion
M. Chiang
Prateek Mittal
Matthias Hein
VLM
207
668
0
19 Oct 2020
Adversarial Machine Learning at Scale
Adversarial Machine Learning at Scale
Alexey Kurakin
Ian Goodfellow
Samy Bengio
AAML
253
3,102
0
04 Nov 2016
1