ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.05577
  4. Cited By
What Can the Neural Tangent Kernel Tell Us About Adversarial Robustness?

What Can the Neural Tangent Kernel Tell Us About Adversarial Robustness?

11 October 2022
Nikolaos Tsilivis
Julia Kempe
    AAML
ArXivPDFHTML

Papers citing "What Can the Neural Tangent Kernel Tell Us About Adversarial Robustness?"

15 / 15 papers shown
Title
A High Dimensional Statistical Model for Adversarial Training: Geometry and Trade-Offs
A High Dimensional Statistical Model for Adversarial Training: Geometry and Trade-Offs
Kasimir Tanner
Matteo Vilucchio
Bruno Loureiro
Florent Krzakala
AAML
50
0
0
31 Dec 2024
Adversarial Training Can Provably Improve Robustness: Theoretical Analysis of Feature Learning Process Under Structured Data
Adversarial Training Can Provably Improve Robustness: Theoretical Analysis of Feature Learning Process Under Structured Data
Binghui Li
Yuanzhi Li
OOD
28
2
0
11 Oct 2024
The Price of Implicit Bias in Adversarially Robust Generalization
The Price of Implicit Bias in Adversarially Robust Generalization
Nikolaos Tsilivis
Natalie Frank
Nathan Srebro
Julia Kempe
40
3
0
07 Jun 2024
Theoretical Understanding of Learning from Adversarial Perturbations
Theoretical Understanding of Learning from Adversarial Perturbations
Soichiro Kumano
Hiroshi Kera
Toshihiko Yamasaki
AAML
31
1
0
16 Feb 2024
Rethinking Adversarial Training with Neural Tangent Kernel
Rethinking Adversarial Training with Neural Tangent Kernel
Guanlin Li
Han Qiu
Shangwei Guo
Jiwei Li
Tianwei Zhang
AAML
22
0
0
04 Dec 2023
Embarassingly Simple Dataset Distillation
Embarassingly Simple Dataset Distillation
Yunzhen Feng
Ramakrishna Vedantam
Julia Kempe
DD
34
5
0
13 Nov 2023
Fast Graph Condensation with Structure-based Neural Tangent Kernel
Fast Graph Condensation with Structure-based Neural Tangent Kernel
Lin Wang
Wenqi Fan
Jiatong Li
Yao Ma
Qing Li
DD
26
26
0
17 Oct 2023
Theoretical Analysis of Robust Overfitting for Wide DNNs: An NTK
  Approach
Theoretical Analysis of Robust Overfitting for Wide DNNs: An NTK Approach
Shaopeng Fu
Di Wang
AAML
28
1
0
09 Oct 2023
Kernels, Data & Physics
Kernels, Data & Physics
Francesco Cagnetta
Deborah Oliveira
Mahalakshmi Sabanayagam
Nikolaos Tsilivis
Julia Kempe
23
0
0
05 Jul 2023
How Spurious Features Are Memorized: Precise Analysis for Random and NTK
  Features
How Spurious Features Are Memorized: Precise Analysis for Random and NTK Features
Simone Bombari
Marco Mondelli
AAML
19
4
0
20 May 2023
Beyond the Universal Law of Robustness: Sharper Laws for Random Features
  and Neural Tangent Kernels
Beyond the Universal Law of Robustness: Sharper Laws for Random Features and Neural Tangent Kernels
Simone Bombari
Shayan Kiyani
Marco Mondelli
AAML
28
10
0
03 Feb 2023
Understanding Reconstruction Attacks with the Neural Tangent Kernel and
  Dataset Distillation
Understanding Reconstruction Attacks with the Neural Tangent Kernel and Dataset Distillation
Noel Loo
Ramin Hasani
Mathias Lechner
Alexander Amini
Daniela Rus
DD
26
5
0
02 Feb 2023
Can we achieve robustness from data alone?
Can we achieve robustness from data alone?
Nikolaos Tsilivis
Jingtong Su
Julia Kempe
OOD
DD
36
18
0
24 Jul 2022
RobustBench: a standardized adversarial robustness benchmark
RobustBench: a standardized adversarial robustness benchmark
Francesco Croce
Maksym Andriushchenko
Vikash Sehwag
Edoardo Debenedetti
Nicolas Flammarion
M. Chiang
Prateek Mittal
Matthias Hein
VLM
219
676
0
19 Oct 2020
Adversarial examples in the physical world
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
272
5,833
0
08 Jul 2016
1