Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2210.05837
Cited By
A composable machine-learning approach for steady-state simulations on high-resolution grids
11 October 2022
Rishikesh Ranade
C. Hill
Lalit Ghule
Jay Pathak
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A composable machine-learning approach for steady-state simulations on high-resolution grids"
7 / 7 papers shown
Title
Sampling-based Distributed Training with Message Passing Neural Network
P. Kakka
Sheel Nidhan
Rishikesh Ranade
Jay Pathak
J. MacArt
GNN
75
3
0
20 Feb 2025
A domain decomposition-based autoregressive deep learning model for unsteady and nonlinear partial differential equations
Sheel Nidhan
Haoliang Jiang
Lalit Ghule
C. Umphrey
Rishikesh Ranade
Jay Pathak
AI4CE
34
0
0
26 Aug 2024
Efficient training of physics-informed neural networks via importance sampling
M. A. Nabian
R. J. Gladstone
Hadi Meidani
DiffM
PINN
69
220
0
26 Apr 2021
Parallel Physics-Informed Neural Networks via Domain Decomposition
K. Shukla
Ameya Dilip Jagtap
George Karniadakis
PINN
98
272
0
20 Apr 2021
NVIDIA SimNet^{TM}: an AI-accelerated multi-physics simulation framework
O. Hennigh
S. Narasimhan
M. A. Nabian
Akshay Subramaniam
Kaustubh Tangsali
M. Rietmann
J. Ferrandis
Wonmin Byeon
Z. Fang
S. Choudhry
PINN
AI4CE
91
125
0
14 Dec 2020
Fourier Neural Operator for Parametric Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
203
2,272
0
18 Oct 2020
hp-VPINNs: Variational Physics-Informed Neural Networks With Domain Decomposition
E. Kharazmi
Zhongqiang Zhang
George Karniadakis
117
506
0
11 Mar 2020
1