ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.06071
  4. Cited By
Self-Validated Physics-Embedding Network: A General Framework for
  Inverse Modelling

Self-Validated Physics-Embedding Network: A General Framework for Inverse Modelling

12 October 2022
Ruiyuan Kang
D. Kyritsis
P. Liatsis
    AI4CE
    PINN
ArXivPDFHTML

Papers citing "Self-Validated Physics-Embedding Network: A General Framework for Inverse Modelling"

7 / 7 papers shown
Title
Physics-Driven AI Correction in Laser Absorption Sensing Quantification
Physics-Driven AI Correction in Laser Absorption Sensing Quantification
Ruiyuan Kang
P. Liatsis
Meixia Geng
Qingjie Yang
45
0
0
20 Aug 2024
Physics-Driven ML-Based Modelling for Correcting Inverse Estimation
Physics-Driven ML-Based Modelling for Correcting Inverse Estimation
Ruiyuan Kang
Tingting Mu
P. Liatsis
D. Kyritsis
29
2
0
25 Sep 2023
EEE, Remediating the failure of machine learning models via a
  network-based optimization patch
EEE, Remediating the failure of machine learning models via a network-based optimization patch
Ruiyuan Kang
D. Kyritsis
P. Liatsis
26
0
0
22 Apr 2023
A General Framework Combining Generative Adversarial Networks and
  Mixture Density Networks for Inverse Modeling in Microstructural Materials
  Design
A General Framework Combining Generative Adversarial Networks and Mixture Density Networks for Inverse Modeling in Microstructural Materials Design
Zijiang Yang
Dipendra Jha
Arindam Paul
W. Liao
A. Choudhary
Ankit Agrawal
MedIm
AI4CE
23
10
0
26 Jan 2021
Fourier Neural Operator for Parametric Partial Differential Equations
Fourier Neural Operator for Parametric Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
205
2,282
0
18 Oct 2020
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
329
11,681
0
09 Mar 2017
Adversarial examples in the physical world
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
287
5,835
0
08 Jul 2016
1