ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.06384
  4. Cited By
GMP*: Well-Tuned Gradual Magnitude Pruning Can Outperform Most
  BERT-Pruning Methods

GMP*: Well-Tuned Gradual Magnitude Pruning Can Outperform Most BERT-Pruning Methods

12 October 2022
Eldar Kurtic
Dan Alistarh
    AI4MH
ArXivPDFHTML

Papers citing "GMP*: Well-Tuned Gradual Magnitude Pruning Can Outperform Most BERT-Pruning Methods"

4 / 4 papers shown
Title
Beyond Perplexity: Multi-dimensional Safety Evaluation of LLM
  Compression
Beyond Perplexity: Multi-dimensional Safety Evaluation of LLM Compression
Zhichao Xu
Ashim Gupta
Tao Li
Oliver Bentham
Vivek Srikumar
40
8
0
06 Jul 2024
oBERTa: Improving Sparse Transfer Learning via improved initialization,
  distillation, and pruning regimes
oBERTa: Improving Sparse Transfer Learning via improved initialization, distillation, and pruning regimes
Daniel Fernando Campos
Alexandre Marques
Mark Kurtz
Chengxiang Zhai
VLM
AAML
11
2
0
30 Mar 2023
Sparsity in Deep Learning: Pruning and growth for efficient inference
  and training in neural networks
Sparsity in Deep Learning: Pruning and growth for efficient inference and training in neural networks
Torsten Hoefler
Dan Alistarh
Tal Ben-Nun
Nikoli Dryden
Alexandra Peste
MQ
139
684
0
31 Jan 2021
The Lottery Ticket Hypothesis for Pre-trained BERT Networks
The Lottery Ticket Hypothesis for Pre-trained BERT Networks
Tianlong Chen
Jonathan Frankle
Shiyu Chang
Sijia Liu
Yang Zhang
Zhangyang Wang
Michael Carbin
148
345
0
23 Jul 2020
1